Feed RSS

Archivi del mese: marzo 2014

I tempi della ricerca medica.

Inserito il

La disinformazione scientifica in campo medico (e non solo) dilaga. Un oscurantismo moderno intriso di superstizione che abbiamo visto recentemente tornare alla ribalta con  casi come Stamina, i servizi sulle diete alcaline per curare i tumori e gli articoli sui vaccini che causano l’autismo.

Bufale avvolte in un alone di mistero complottista e colme dell’ignoranza e della supponenza di chi vuole parlare con cognizione di causa di qualcosa che non conosce. Tutto questo non fa altro che alimentare falsi miti e creare una grande confusione tra il pubblico privo (non per colpa sua) di basi scientifiche adeguate.

Uno degli scopi principali di questo blog è cercare di parlare di scienza in modo corretto e comprensibile. Per questo motivo vorrei cercare di riportare un po’ di ordine nel marasma pseudoscientifico degli ultimi tempi dedicando i prossimi post allo sviluppo della medicina moderna e ai processi che portano alla nascita di un farmaco.

Sono argomenti molto densi e molto complessi ma cercherò di esporli in maniera sintetica e non troppo noiosa. Va da sé che ciò mi impone di non poter entrare nel dettaglio o approfondire ogni singolo aspetto di ogni punto.

Oggi vorrei partire da un’affermazione che leggo spesso sui social network e che viene usata in genere da chi diffonde le bufale sopracitate cercando di screditare la ricerca scientifica, ovvero: “Figurati se nel terzo millennio non esiste una cura per questa malattia”

Questa è una dimostrazione dell’ignoranza e della supponenza a cui ho fatto riferimento sopra. I molti (purtroppo) che pronunciano una frase del genere palesano da un lato una profonda ignoranza della storia della medicina moderna e dall’altro sopravvalutano le capacità tecnologiche dell’uomo.

A livello di superficialità è come dire “siamo nel 2014, figurati se non siamo in grado di teletrasportare le persone”.

La moderna scienza medica, è vero, ha compiuto passi da gigante negli ultimi anni ma non dobbiamo dimenticare che stiamo parlando di una disciplina estremamente giovane. L’applicazione sistematica del metodo scientifico alla pratica medica risale infatti solamente agli inizi del ventesimo secolo.

La ricerca medica basata su evidenze scientifiche dimostrate, inoltre, si è sviluppata in un mondo in cui le persone venivano “curate” con pratiche mediche fondate sul nulla ma profondamente radicate nelle tradizioni e nelle superstizioni e per questo dure da estirpare. Basti pensare alla pratica dei salassi diffusa sin dall’antichità ed operata fino alla fine del diciannovesimo quando ne è stata dimostrata l’inefficacia e la pericolosità.

Olio di serpente. Un noto “rimedio” venduto dai ciarlatani per curare tutti i mali. Popolare fino a primi decenni del ventesimo secolo, ancora oggi si trovano truffatori che vendono questo elisir o sue varianti.

Tra superstizione, truffe e ciarlatanerie la nascente scienza medica ha dovuto combattere con forza per affermarsi ed estirpare le erbacce che per secoli hanno minato (e spesso minano tuttora)  la salute stessa delle persone che avrebbero dovuto curare.

La medicina moderna quindi esiste e combatte da poco più di un secolo. Cento anni possono sembrare molti ma diventano pochissimi se si pensa che un farmaco per essere sviluppato, approvato e diffuso tra la popolazione richiede in media tra i 10 e i 16 anni.

La penicillina, ad esempio, è stata scoperta ufficialmente da Fleming solo nel 1929 ed utilizzata sistematicamente per combattere le infezioni batteriche sono dagli anni  ’40!  In generale l’uso degli antibiotici risale a meno di 80 anni fa.

Alexander Fleming (credit: Wikipedia)

Perché un farmaco possa essere sviluppato e una malattia curata in modo efficace, inoltre, è opportuno e necessario conoscere le cause, i meccanismi molecolari che determinano una particolare patologia. Conoscendo i meccanismi molecolari di una malattia si possono sviluppare cure con maggiore efficacia. In questo modo, infatti, la ricerca non procede più per tentativi ma, conoscendo il bersaglio, sviluppa l’arma per colpire quel bersaglio in maniera estremamente specifica.

Ma se la medicina moderna è una disciplina giovane, in termini temporali lo sviluppo dello studio delle malattie a livello molecolare è paragonabile ad un neonato. È solo tra la fine degli anni ’80 e l’inizio degli anni ’90, infatti, che si è iniziato a comprendere le basi molecolari della malattie e, al giorno d’oggi, sono più di 4000 le patologie di cui si conoscono le cause a livello molecolare.

Purtroppo il passo tra il conoscere una malattia e sviluppare una cura efficace non è né immediato né automatico. Delle 4000 malattie note sopracitate meno di 300 hanno una cura attualmente disponibile. Questo dato da un’idea della complessità e dei tempi della ricerca.

In poche parole il passaggio tra le conoscenze fondamentali (la scoperta del meccanismo/bersaglio) e l’applicazione pratica di tali conoscenze (lo sviluppo di una cura efficace) è un percorso lungo, difficile, costoso e il cui successo non è scontato.

Nell’immaginario collettivo le scienza è rapida, efficace e raggiunge i proprio obiettivi in tempi brevi. Ricordo di aver riso nel vedere una scena del recente film di Spiderman in cui la cura per far ricrescere un arto viene trovata e sviluppata in una notte.

Una scena tratta da "The Amazing Spiderman" (2012). In un laboratorio i geni vengono ricombinati utilizzando scenografici ologrammi colorati. Tutto molto bello, ma niente di vagamente corrispondente al vero.

Una scena tratta da “The Amazing Spiderman” (2012). In un laboratorio i geni vengono ricombinati utilizzando scenografici ologrammi colorati. Tutto molto bello, ma niente di vagamente corrispondente al vero.

Purtroppo tale immagine è buona giusto per un buon film di fantascienza e non corrisponde a niente di reale.

Ma l’obiettivo principale della ricerca medica è rendere reale la fantascienza. Accorciare i tempi della ricerca, velocizzare lo sviluppo delle cure per particolari patologie sono traguardi concreti che lo sviluppo della moderna tecnologia sta contribuendo a raggiungere.

Sicuramente gli ologrammi dell’Uomo Ragno non sono dietro l’angolo, ma la ricerca medica sta diventando sempre più efficiente. Diciamo che questa giovane disciplina sta diventando adulta. Del resto in cento anni l’aspettativa di vita di un neonato è passata da meno di 50 anni a quasi 80. Questi sono risultati incredibili e tangibili.

Ridurre i tempi di sviluppo di una cura è fondamentale. Sia perché permette di salvare più vite oggi sia perché impedisce ai ciarlatani di insinuarsi in questi buchi di conoscenza.

Il caso Stamina è un chiaro esempio di questo fenomeno: l’assenza di una cura efficace immediata porta i malati ad affidarsi a metodi basati sul nulla. Ovviamente non biasimo chi da disperato si aggrappa ad un’illusione, ma condanno chi sfrutta tale disperazione per interessi personali.

È una corsa contro il tempo. La ricerca deve velocizzare i propri tempi per evitare che la gente perda la fiducia nella medicina aggrappandosi a facili e immediate illusioni che non portano a nulla se non al profitto di chi specula sulla sofferenza.

Per oggi chiudo qui. I prossimi post saranno dedicati ai trial clinici e ai processi che portano allo sviluppo di un farmaco.

[Se questo post vi è piaciuto e volete rimanere aggiornati non dimenticate di mettere “mi piace” sulla PAGINA FACEBOOK!]

Annunci

La scossa di un’anguilla elettrica.

Inserito il
Ingresso della California Academy of Science

Ingresso della California Academy of Science

La scorsa settimana mi trovavo a San Francisco per un convegno. Nel tempo libero ho visitato praticamente tutta la città, compresa la moderna California Academy of Science situata all’interno dell’enorme Golden Gate Park.

Girovagando tra le varie sezioni del museo, passando da un frammento di roccia lunare ad un simulatore di terremoti, mi sono ritrovato nell’area dedicata alla vita marina. Un vero e proprio acquario con decine di vasche multicolori!

1660226_10152234151841900_417309026_n

Una delle vasche all’interno dell’Academy.

Mentre passavo in rassegna ogni singola vasca mi sono imbattuto in un animale di cui, fino a quel momento, avevo solo sentito parlare in qualche documentario: la misteriosa anguilla elettrica.

Dopo essermi stupito di quanto piccoli fossero gli occhi in proporzione al resto del corpo mi sono accorto di non sapere effettivamente nulla di come questo bizzarro pesce riesca a produrre scosse elettriche abbastanza forti da stordire se non uccidere le proprie prede.

A quel punto il bambino curioso mai cresciuto che vive in me ha iniziato a strattonare la giacca al biologo apparentemente adulto che si affaccia all’esterno. Per questa ragione, una volta rientrato a casa e recuperato (più o meno) dal jet lag, ho fatto qualche ricerca per rispondere alle domande insistenti del mio fanciullo interiore.

DSCN7550

Il mio incontro con l’anguilla elettrica della California Academy of Science

Prima di addentrarci nell’argomento è però necessaria una brevissima introduzione sulla bioelettricità.

I fenomeni elettrici in natura sono estremamente comuni, basti pensare ai segnali generati e trasportati dai neuroni o all’attività del muscolo cardiaco. Le correnti elettriche negli organismi viventi non sono formate da elettroni in movimento ma bensì da flussi di ioni, ovvero atomi carichi elettricamente. Gli elementi responsabili delle maggiori correnti ioniche a livello cellulare sono il sodio, il potassio, il calcio, l’idrogeno (protoni) ed il cloro (o per meglio dire i rispettivi ioni di questi elementi).

All’interno di una cellula una corrente ionica si sviluppa grazie a particolari proteine che permettono il flusso degli ioni e sono chiamate con il nome fantascientifico di canali ionici.

I diversi tipi di ioni si accumulano in modo asimmetrico sui due lati della membrana cellulare che funge da isolante. La differenza di concentrazione ionica tra l’esterno e l’interno della cellula genera un potenziale eletttrico detto potenziale di membrana. Quando i canali ionici si aprono gli ioni possono fluire attraverso la membrana generando una corrente elettrica.

Rappresentazione semplificata di un canale ionico in membrana. L’apertura del canale permette agli ioni di fluire da un lato all’altro della membrana cellulare generanto una corrente elettrica.

Tra i fenomeni elettofisiologici più noti troviamo il potenziale d’azione, ed il logo di questo blog è una rappresentazione di un potenziale d’azione di una cellula cardiaca ventricolare.

Ma torniamo ora alle nostre anguille elettriche che… non sono anguille!

Ci sono rimasto male anch’io quando l’ho scoperto, ma le anguille elettriche non appartengono all’ordine degli Anguilliformi (a cui appartengono, per esempio, le murene).

Gli elettrofori, questo il loro vero nome, appartengono infatti all’unica specie esistente del genere Electrophorus ed la loro denominazione scientifica corretta è Electophorus electricus.

Questi pesci tipici di tutta l’America Meridionale sono predatori che possono raggiungere i due metri e mezzo di lunghezza e i 20kg di peso. Sono pesci aerobi obbligati, altra particolarità, e circa ogni 10 minuti devono emergere per respirare aria.

Vivono in acque torbide caratterizzate da una scarsa visibilità. Per ovviare a questo problema le anguille elettriche, come altri pesci elettrofori, sono dotate di un organo elettrico debole che utilizzano per orientarsi e individuare le prede: generando un campo elettrico debole sono in grado di percepire perturbazioni all’interno del campo stesso date dal transito di altri animali.

È probabile che proprio da questo organo elettrico debole si sia evoluta l’arma letale rappresentata dall’organo elettrico forte che forma circa l’80% del corpo dell’anguilla elettrica. Questo organo specializzato è in grado di genereare scariche nell’ordine delle centinaia di Volt! Le scariche, comunque, durano meno di 2 millisecondi e hanno un’intensità ridotta (circa 1A). È quindi improbabile che un uomo adulto possa rimanere ucciso da un attacco di un anguilla elettrica.

Breve stacco: nel video sottostante un’anguilla elettrica viene usata per illuminare un albero di Natale.

Tornando seri. L’organo elettrico che, come detto, occupa gran parte del corpo dell’animale (gli organi vitali sono concentrati vicino alla testa) è formato da cellule muscolari specializzate chiamate elettrociti.

Gli elettrociti sono impacchettati e orientati all’interno dell’organo elettrico formando una struttura simile ad una pila di Volta (tra l’altro sembra che sia Galvani e che Volta siano stati ispirati proprio da studi condotti sull’anguilla elettrica).

Ciascun elettrocita possiede un lato liscio a contatto con le fibre nervose e rivolto verso la coda dell’animale, ed un lato frastagliato orientato verso la testa. I canali ionici presenti sulle membrane dei due lati della cellula permettono all’elettrocita di creare una differenza di potenziale tra l’interno e l’esterno della membrana che si aggira intorno ai 0.15V.

In sostanza ciascuno elettrocita, grazie ai canali ionici, si carica in pararello di una piccola differenza di potenziale.

Quando rileva una preda il sistema nervoso dell’anguilla elettrica manda un segnale alle terminazioni nervose in contatto con ciascun elettrocita. Con una quasi perfetta simultaneità (i cui meccanismi sono ancora poco chiari) migliaia di elettrociti si scaricano in serie, sommando i loro piccoli potenziali individuali fino a raggiungere valori impressionanti intorno ai 400-600V (un fenomeno analogo a quello di un generatore di Marx).

La corrente elettrica fluisce così attraverso il corpo dell’elettroforo dalla coda verso la testa diffondendosi poi nell’ambiente circostante grazie agli ioni disciolti nell’acqua (rientrando poi nella coda dell’anguilla elettrica e chiudendo il circuito).

Per i piccoli animali di cui l’elettroforo si nutre non c’è scampo…

Visti i meccanismi alla base della fisiologia dell’anguilla elettrica sorge però un altro dubbio: perché l’anguilla elettrica non rimane folgorata dalla propria corrente?

La domanda è legittima e la risposta non è scontata. Anzi, si può dire che non si sappia con certezza come mai l’elettroforo non sia soggetto alla propria scarica elettrica.

Le ipotesi in merito sostengono che in realtà le anguille elettriche prendano effettivamente la scossa, ma che abbiano sviluppato una sorta di resistenza (per esempio percependo lo shock ma non provandone dolore) oppure la particolare conformazione anatomica (con gli organi vitali impacchettati vicino alla testa)  garantisce all’animale un isolamento elettrico che lo protegge dallo shock.

Chiudo con una nota divertente. Cercando articoli per scrivere questo post mi sono imbattuto in QUESTO splendido falso articolo scientifico in cui le caratteristiche dell’anguilla elettrica vengono confrontate con le analoghe capacità del topo elettrico… il famoso P. pikachu!

 [Se questo post vi è piaciuto e volete rimanere aggiornati non dimenticate di mettere “mi piace” sulla PAGINA FACEBOOK!]

%d blogger hanno fatto clic su Mi Piace per questo: