Feed RSS

Archivi tag: chernobyl

Perché le banane non hanno semi?

Inserito il

La banana è uno dei frutti più diffusi e consumati dall’uomo. Domesticata originariamente nella Papua Nuova Guinea, oggi viene coltivata in più di 107 differenti paesi (India in testa) con una produzione globale che supera ampiamente i 100 milioni di tonnellate all’anno.

Ma vi siete mai chiesti come mai le banane non hanno semi? E se non hanno semi, come si riproducono?

La risposta è semplice ma forse non troppo immediata. Per poter capire il mistero che si cela dietro questa falsa bacca della famiglia delle Musaceae dobbiamo introdurre il concetto di ploidia.

In genetica con il termine ploidia si indica il numero delle serie di cromosomi presenti all’interno di una cellula. Prendiamo come esempio l’uomo. Sappiamo che ciascuna nostra cellula somatica (ovvero una qualsiasi cellula che non sia uno spermatozoo o un ovulo) ha 46 cromosomi, 23 ereditati dal padre e 23 dalla madre.

Quinidi abbiamo due serie di cromosomi omologhi e possiamo definirci organismi diploidi o 2N.

I 46 cromosomi umani organizzati in 23 coppie (due serie di cromosomi omologhi)

I 46 cromosomi umani organizzati in 23 coppie (due serie di cromosomi omologhi). I cromosomi X e Y formano la coppia numero 23.

I nostri gameti invece (spermatozoi e ovuli) sono aploidi  (1N) in quanto hanno una sola serie di 23 cromosomi. Unendosi ad un gamete del sesso opposto formeranno una cellula somatica con 46 cromosomi.

In genere numeri pari di ploidia sono ben tollerati dagli organismi e si parla di euploidia (buona ploidia), mentre i numeri dispari sono difficilmente gestibili nella riproduzione binaria di una cellula e in questo caso di parla di aneuploidia.

Anche le banane, in quanto organismi viventi, hanno cellule contenenti cromosomi e anche in questo caso un numero pari di serie di cromosomi è ben tollerato. Una banana diploide (2N) può produrre gameti aploidi (1N), una banana tetraploide (4N) produrrà gameti diploidi (2N), e così via.

Le banane che mangiamo tutti i giorni, invece, sono triploidi (3N) in quanto derivano dall’incrocio tra una banana 4N e una 2N. Come detto sopra un numero dispari di ploidia è difficile da gestire durante la riproduzione. Per questo motivo le banane 3N non riescono a produrre gameti bilanciati e risultano sterili e prive di semi

Ma se sono sterili e senza semi, come si possono riprodurre?

Semplice, per riproduzione asessuata. Quando un banano viene abbattutto per la raccolta dei suoi frutti un suo pollone radicale (nuove piante che si sviluppano dalle radici delle pianta madre) viene ripiantato per far nascere un nuovo banano che darà nuovi frutti.

Questo significa che le banane che mangiamo sono tutte cloni della stessa banana!

Tutte le banane che mangiamo appartengon infatti alla varietà Cavendish ed essendo prodotte senza incroci sono tutte geneticamente molto simili tra loro. Una bassa variabilità genetica comporta un’elevata vulnerabilità agli agenti patogeni. La mancanza di incroci, infatti, limita la diffusione di geni di resistenza che possono proteggere da attacchi di agenti patogeni come virus o funghi.

La banana Cavendish. La maggiormente diffusa nel commercio mondiale.

La vulnerabilità delle banane non è un concetto puramente teorico. Fino agli anni 50, infatti, a dominare il mercato mondiale era la varietà Gros Michel, la quale però fu quasi portata all’estinzione da un fungo che distrusse tutte le coltivazioni mondiali (risparmiando solo parte dell’Asia).

La Gros Michel fu quindi soppiantata dalla Cavendish che mangiamo oggi, ma anch’essa potrebbe estinguersi in pochi anni per via di nuovi funghi e nuove malattie.

Ricercatori in tutto il mondo stanno tentando di salvare la Cavendish e la produzione mondiale di banane attraverso le moderne tecniche di ingegneria genetica (come ho spiegato in un altro POST gli OGM sono solo una tecnica, che, come un questo caso, può essere usata in modo utile e costruttivo).

Curiosità: le banane sono naturalmente lievemente radioattive in quanto ricche di potassio (niente di pericoloso, molti cibi sono lievemente radioattivi). La dose equivalente ad una banana è un’unità di misura che esprime la quantità di radiazioni assorbite. Per fare un esempio l’esposizione alle radiazioni della popolazione italiana nei 10 anni successivi al disastro di Chernobyl è stimata intorno alle 11,5 banane al giorno.

[IMPORTANTE NOTA INTEGRATIVA: In seguito ad un commento lasciato da un lettore, che ringrazio, ho deciso di integrare questo post con informazioni che, per mia ignoranza, erano state escluse dal post originale. Le banane vengono generalmente colte acerbe ed il processo di maturazione una volta staccate è in realtà una decomposizione che aumenta la concentrazione di zuccheri nel frutto e rende il frutto mangiabile. Se la banana viene lasciata a lungo sulla pianta l’effettivo processo di maturazione può portare alla formazione di piccoli semi vestigiali (visibili nella banana come file di fini grani neri). Questi sono sterili e sono residui dei semi delle piante ancestrali dalle quali la banana moderna discende. Potete approfondire ulteriormente l’argomento in articoli dedicati alla selezione delle banane moderne QUI e QUI.]

[Se questo post ti è piaciuto e vuoi rimanere aggiornato/a non dimenticare di mettere “mi piace” sulla PAGINA FACEBOOK!]

Annunci

Vivere di radiazioni.

Inserito il

Alzi la mano chi non conosce Godzilla. Anche chi non ama il genere non potrà non conoscere il mostro cinematografico per antonomasia, padre di tutti i mostri giganti spesso identificati con il termine giapponese “kaiju” (letteralmente “strana creatura”).

Il gigantesco lucertolone è tornato recentemente nelle sale con una nuova produzione americana per celebrare il 60° anniversario della sua prima apparizione al largo delle coste giapponesi.

Un fotogramma tratto dal nuovo Godzilla del 2014.

Un fotogramma tratto dal nuovo Godzilla del 2014.

Per chi non lo sapesse, Godzilla non è solo un mostro distruttore di città. Questo bestione simile ad un dinosauro, infatti, nasce anche come critica all’utilizzo dell’energia nucleare ed delle armi atomiche. Con le proprie dimensioni e la propria forza distuttrice Godzilla rappresenta l’inarrestabile potenza dell’energia nucleare.

Capisco possa difficile vedere allegorie guardando un dinosauro di gomma abbattere grattacieli di cartapesta, ma pensate che il primo film uscì nelle sale nel 1954, solo 9 anni dopo le esplosioni atomiche che cancellarono Hiroshima e Nagasaki dalle mappe giapponesi nell’agosto del 1945.

Il tema nucleare è il leitmotiv di tutti i film di Godzilla. Nel primo film del 1954, ad esempio, il mostro viene risvegliato da un’esplosione atomica ed in seguito potenziato dalle radiazioni che lo rendono praticamente invincibile.

Il primo Godzilla del 1954. Un pupazzone circondato da modellini di mezzi militari (credits: Wikipedia)

Nell’immaginario collettivo le radiazioni liberate nell’ambiente in seguito a disastri nucleari sono sempre (e giustamente) assocciate a morte, devastazione e terribili mutazioni genetiche nei sopravvissuti. I danni provocati alla doppia elica del DNA dalle radiazioni ionizzanti possono portare allo sviluppo di tumori e gravi malattie e deformazioni nei neonati. Ovviamente non stiamo parlando di lucertole alte 50 metri, ma le zone altamente radioattive rimangono tra i luoghi più pericolosi ed inospitali del pianeta.

Nonostante queste zone siano praticamente inabitabili dall’uomo, esiste un discreto numero di organismi in grado di sopravvivere in ambienti saturi di radiazioni ionizzanti. Piante, vermi, insetti e batteri, per esempio, hanno stupito tutti dimostrando di poter sopravvivere ed adattarsi alle zone circostanti le rovine del reattore di Chernobyl.

Tra gli organismi radioresistenti spicca su tutti Thermococcus gammatolerans, un archea (organismi unicellulari simili ai batteri) in grado di sopportare un livello di raggi gamma fino a 30.000 grays (il gray è l’unita di misura per l’assorbimento di radiazioni ionizzanti, la dose letale per un essere umano oscilla tra i 4 e i 10 grays).

Thermococcus gammatolerans, questo organismo possiede la miglior resistenza alle radiazioni ionizzanti mai osservata in Natura (credits: Wikipedia)

Ma Thermococcus e gli altri organismi radioresistenti possono vivere in mezzo alle radiazioni, non nutrirsi di radiazioni come il ben più grosso lucertolone citato sopra.

La domanda quindi è: esistono organismi in grado di “mangiare” radiazioni?

Anche in questo caso la Natura non smette mai di stupirci ed effettivamente possiamo trovare degli esseri viventi che traggono la propria energia dalle radiazioni ionizzanti.

Nelle profondità delle miniere d’oro del Sudafrica si possono infatti trovare batteri in grado di sfruttare il decadimento dell’uranio presente nelle rocce. Gli atomi di uranio, decadendo, inducono la radiolisi dell’acqua le cui molecole si spezzano liberando idrogeno. I batteri che vivono in queste miniere sono in grado di combinare l’idrogeno derivato dalla radiolisi con i solfati delle rocce circostanti per produrre energia sufficiente a sostenere la vita in completa assenza di sole (ho già trattato l’argomento in QUESTO post).

Tutto sommato, però, questi batteri vivono dell’idrogeno liberato dalle radiazioni e non direttamente di radiazioni.

Per incontrare organismi che traggono direttamente la propria energia metabolica dalle radiazioni ionizzanti dobbiamo abbandonare le grotte del Sudafrica per spostarci in un ambiente ancora più inospitale, situato nell’Ucraina settentrionale: la centrale nucleare di Chernobyl,dove già abbiamo incontrato gli organismi radioresistenti sopracitati.

Agli inizi degli anni ’90, nelle lande che circondano l’impianto sono state scoperte tre specie differenti di funghi radiotrofici, ovvero in grado di nutrirsi direttamente di radiazioni (QUI un breve articolo su Nature).

Gli organismi appartenenti al regno dei funghi sono noti per nutrirsi praticamente di qualsiasi cosa, dall’amianto al carburante degli aerei. Tra varie prelibatezze nel menù dei funghi troviamo facilmente anche materiali radioattivi. I funghi scoperti a Chernobyl, però, sono unici in quanto non si nutrono di scorie radioattive ma delle radiazioni stesse.

Questi funghi appaiono come una muffa nera. Il colore scuro è dato dalla massiccia quantità di melanina presente all’interno delle loro cellule. La melanina è un pigmento fondamentale per proteggersi dalle radiazioni solari ed è altamente diffuso tra gli organismi viventi (basti pensare alla nostra abbronzatura, ho approfondito l’argomento in QUESTO post).

Cryptococcus neoformas, una delle specie di funghi in grado di nutrirsi di radiazioni ionizzanti scoperte tra le rovine di Chernobyl. (credits: Wikipedia)

La melanina dei funghi di Cernobyl, però, è particolare in quanto non solo protegge il fungo dalle radiazioni ma permette all’organismo di utilizzare gli stessi raggi gamma come fonte di energia. Il meccanismo molecolare non è ancora del tutto noto, ma si pensa che la melanina di questi funghi possa comportarsi in modo simile alla clorofilla delle piante che converte l’energia solare in energia metabolica.

Infatti, in presenza di radiazioni ionizzanti, questi funghi crescono ad un ritmo quattro volte superiore al normale. Come se ne venissero potenziati!

In conclusione devo ammettere che in questo caso la realtà è forse meno esaltante della finzione; del resto un manciata di muffe nere non può competere con una lucertola gigante, e di sicuro la minaccia di un fungo mutante in grado di distruggere una città è decisamente remota. Le vie dell’evoluzione, però, sono infinite e misteriose… Teniamo gli occhi aperti!

[Se questo post ti è piaciuto e vuoi rimanere aggiornato/a non dimenticare di mettere “mi piace” sulla PAGINA FACEBOOK!]

%d blogger hanno fatto clic su Mi Piace per questo: