Feed RSS

Archivi tag: dna

Vivere di radiazioni.

Inserito il

Alzi la mano chi non conosce Godzilla. Anche chi non ama il genere non potrà non conoscere il mostro cinematografico per antonomasia, padre di tutti i mostri giganti spesso identificati con il termine giapponese “kaiju” (letteralmente “strana creatura”).

Il gigantesco lucertolone è tornato recentemente nelle sale con una nuova produzione americana per celebrare il 60° anniversario della sua prima apparizione al largo delle coste giapponesi.

Un fotogramma tratto dal nuovo Godzilla del 2014.

Un fotogramma tratto dal nuovo Godzilla del 2014.

Per chi non lo sapesse, Godzilla non è solo un mostro distruttore di città. Questo bestione simile ad un dinosauro, infatti, nasce anche come critica all’utilizzo dell’energia nucleare ed delle armi atomiche. Con le proprie dimensioni e la propria forza distuttrice Godzilla rappresenta l’inarrestabile potenza dell’energia nucleare.

Capisco possa difficile vedere allegorie guardando un dinosauro di gomma abbattere grattacieli di cartapesta, ma pensate che il primo film uscì nelle sale nel 1954, solo 9 anni dopo le esplosioni atomiche che cancellarono Hiroshima e Nagasaki dalle mappe giapponesi nell’agosto del 1945.

Il tema nucleare è il leitmotiv di tutti i film di Godzilla. Nel primo film del 1954, ad esempio, il mostro viene risvegliato da un’esplosione atomica ed in seguito potenziato dalle radiazioni che lo rendono praticamente invincibile.

Il primo Godzilla del 1954. Un pupazzone circondato da modellini di mezzi militari (credits: Wikipedia)

Nell’immaginario collettivo le radiazioni liberate nell’ambiente in seguito a disastri nucleari sono sempre (e giustamente) assocciate a morte, devastazione e terribili mutazioni genetiche nei sopravvissuti. I danni provocati alla doppia elica del DNA dalle radiazioni ionizzanti possono portare allo sviluppo di tumori e gravi malattie e deformazioni nei neonati. Ovviamente non stiamo parlando di lucertole alte 50 metri, ma le zone altamente radioattive rimangono tra i luoghi più pericolosi ed inospitali del pianeta.

Nonostante queste zone siano praticamente inabitabili dall’uomo, esiste un discreto numero di organismi in grado di sopravvivere in ambienti saturi di radiazioni ionizzanti. Piante, vermi, insetti e batteri, per esempio, hanno stupito tutti dimostrando di poter sopravvivere ed adattarsi alle zone circostanti le rovine del reattore di Chernobyl.

Tra gli organismi radioresistenti spicca su tutti Thermococcus gammatolerans, un archea (organismi unicellulari simili ai batteri) in grado di sopportare un livello di raggi gamma fino a 30.000 grays (il gray è l’unita di misura per l’assorbimento di radiazioni ionizzanti, la dose letale per un essere umano oscilla tra i 4 e i 10 grays).

Thermococcus gammatolerans, questo organismo possiede la miglior resistenza alle radiazioni ionizzanti mai osservata in Natura (credits: Wikipedia)

Ma Thermococcus e gli altri organismi radioresistenti possono vivere in mezzo alle radiazioni, non nutrirsi di radiazioni come il ben più grosso lucertolone citato sopra.

La domanda quindi è: esistono organismi in grado di “mangiare” radiazioni?

Anche in questo caso la Natura non smette mai di stupirci ed effettivamente possiamo trovare degli esseri viventi che traggono la propria energia dalle radiazioni ionizzanti.

Nelle profondità delle miniere d’oro del Sudafrica si possono infatti trovare batteri in grado di sfruttare il decadimento dell’uranio presente nelle rocce. Gli atomi di uranio, decadendo, inducono la radiolisi dell’acqua le cui molecole si spezzano liberando idrogeno. I batteri che vivono in queste miniere sono in grado di combinare l’idrogeno derivato dalla radiolisi con i solfati delle rocce circostanti per produrre energia sufficiente a sostenere la vita in completa assenza di sole (ho già trattato l’argomento in QUESTO post).

Tutto sommato, però, questi batteri vivono dell’idrogeno liberato dalle radiazioni e non direttamente di radiazioni.

Per incontrare organismi che traggono direttamente la propria energia metabolica dalle radiazioni ionizzanti dobbiamo abbandonare le grotte del Sudafrica per spostarci in un ambiente ancora più inospitale, situato nell’Ucraina settentrionale: la centrale nucleare di Chernobyl,dove già abbiamo incontrato gli organismi radioresistenti sopracitati.

Agli inizi degli anni ’90, nelle lande che circondano l’impianto sono state scoperte tre specie differenti di funghi radiotrofici, ovvero in grado di nutrirsi direttamente di radiazioni (QUI un breve articolo su Nature).

Gli organismi appartenenti al regno dei funghi sono noti per nutrirsi praticamente di qualsiasi cosa, dall’amianto al carburante degli aerei. Tra varie prelibatezze nel menù dei funghi troviamo facilmente anche materiali radioattivi. I funghi scoperti a Chernobyl, però, sono unici in quanto non si nutrono di scorie radioattive ma delle radiazioni stesse.

Questi funghi appaiono come una muffa nera. Il colore scuro è dato dalla massiccia quantità di melanina presente all’interno delle loro cellule. La melanina è un pigmento fondamentale per proteggersi dalle radiazioni solari ed è altamente diffuso tra gli organismi viventi (basti pensare alla nostra abbronzatura, ho approfondito l’argomento in QUESTO post).

Cryptococcus neoformas, una delle specie di funghi in grado di nutrirsi di radiazioni ionizzanti scoperte tra le rovine di Chernobyl. (credits: Wikipedia)

La melanina dei funghi di Cernobyl, però, è particolare in quanto non solo protegge il fungo dalle radiazioni ma permette all’organismo di utilizzare gli stessi raggi gamma come fonte di energia. Il meccanismo molecolare non è ancora del tutto noto, ma si pensa che la melanina di questi funghi possa comportarsi in modo simile alla clorofilla delle piante che converte l’energia solare in energia metabolica.

Infatti, in presenza di radiazioni ionizzanti, questi funghi crescono ad un ritmo quattro volte superiore al normale. Come se ne venissero potenziati!

In conclusione devo ammettere che in questo caso la realtà è forse meno esaltante della finzione; del resto un manciata di muffe nere non può competere con una lucertola gigante, e di sicuro la minaccia di un fungo mutante in grado di distruggere una città è decisamente remota. Le vie dell’evoluzione, però, sono infinite e misteriose… Teniamo gli occhi aperti!

[Se questo post ti è piaciuto e vuoi rimanere aggiornato/a non dimenticare di mettere “mi piace” sulla PAGINA FACEBOOK!]

Annunci

Come nasce un farmaco?

Inserito il

Premessa: con questo post non voglio né difendere né attaccare le case farmaceutiche. L’intento di questo post è semplicemente quello di descrivere brevemente i passaggi che portano alla nascita di un farmaco.

Prima di cominciare vorrei però esprimere un paio di concetti sulla logica dell’industria del farmaco. Quando si parla di produzione di farmaci la critica principale si può riassumere con: le case farmaceutiche pensano solo al profitto.

Questa affermazione è tutto sommato vera, ma questo non implica per forza che la qualità dei farmaci sia scarsa o, peggio ancora, che aziende e medici vogliano far ammalare la gente per non rimanere senza lavoro (si sente pure questo, anche da note trasmissioni televisive, non faccio nomi). A logica sarebbe come dire che la polizia vorrebbe le strade piene di criminali o i pompieri le foreste sempre in fiamme.

Chi mi conosce sa quanto sia critico verso un sistema basato su capitalismo e consumismo, dominato dalle corporazioni. La prospettiva di un futuro distopico simile al “Brave New World” di Huxley mi fa semplicemente rabbrividire.

Nel Mondo Nuovo Huxley immagina un futuro distopico in cui gli esseri umani, divisi per caste e prodotti in fabbrica, vivono una vita  priva di ogni inibizione morale, in cui i rapporti tra individui sono superficiali, falsi e passeggeri. In questa società i farmaci la fanno da padrone.

Nel Mondo Nuovo Huxley immagina un futuro distopico in cui gli esseri umani, divisi per caste e prodotti in fabbrica, vivono una vita priva di ogni inibizione morale, in cui i rapporti tra individui sono superficiali, falsi e passeggeri. In questa società i farmaci la fanno da padrone.

D’altro canto, considerando il nostro sistema attuale, non riesco ad immaginare un modo di tutelare la salute di milioni di individui senza muovere ingenti somme di denaro. Il discorso del profitto è, come detto, vero, ma non rappresenta una critica effettiva. Qualsiasi impresa ha come obiettivo un profitto finale. Che produca olio, pasta, sigarette o smartphone qualsiasi azienda cercherà di avere un margine di profitto. Mi sembra una cosa scontata. Certo, come ci sono aziende che vendono olio scadente come extravergine esistono anche case farmaceutiche che pongono i propri interessi economici di fronte alla ricerca scientifica. I casi di aziende (farmaceutiche e non) con comportamenti criminali e spregiudicati esistono, sono documentati e, quando scoperti, i colpevoli sono giustamente perseguiti e condannati.

Questi casi, però non devono far perdere la fiducia nella ricerca. Per un medico criminale ne esistono centinaia onesti. Il fatto che possano esistere medici criminali non è un buon motivo per buttarsi tra le braccia di santoni e terapie pseudoscientifiche. Per fare un paragone spiccio: se un elettricista mi imbroglia facendomi un impianto scadente non abbandono l’elettricità in favore di barattoli pieni di lucciole; semplicemente chiamo un altro elettricista assicurandomi che sia più onesto del precedente.

Ma passiamo all’argomento principale del post.

Come nasce un farmaco?

Per comodità mi concentrerò sulle piccole molecole (come l’aspirina) e tralascerò altri tipi di farmaci come i farmaci biologici (enzimi, vaccini) o i dispositivi medici (protesi, strumentazioni diagnostiche).

Forse non tutti sanno che le grandi case farmaceutiche non sono gli unici attori nel processo di nascita di un nuovo farmaco. Laboratori indipendenti e Università sono infatti attivamente coinvolti nel percorso. Spesso può succedere, ad esempio, che una molecola venga scoperta o prodotta da un laboratorio universitario il quale, non disponendo né di fondi né di strutture adeguate, vende il brevetto ad una casa farmaceutica la quale è in grado di sostenere e finanziare tutti i test necessari e di procedere poi alla commercializzazione finale. Una qualsiasi casa farmaceutica può godere dell’uso esclusivo del brevetto per un periodo limitato (in Italia sono 25 anni), dopodiché il brevetto decade, la molecola diventa pubblica e utilizzabile da qualunque altra azienda. Scaduto il brevetto un farmaco diventa quindi un cosiddetto farmaco equivalente (o generico).

In generale lo sviluppo di un nuovo farmaco è un processo molto lungo (fino a 16 anni) ed estremamente costoso (qui le cifre ballano, c’è chi parla di oltre un miliardo di euro a molecola a chi riporta cifre tra i 100 e 200 milioni di euro) che richiede il lavoro sinergico di numerosi esperti in settori anche molto differenti tra di loro.

La nascita di una singola molecola, infatti, vede la collaborazione di specialisti come farmacologi, chimici specializzati in sintesi, clinici, biologi molecolari, esperti di regolamentazione e normative, biochimici, bioinformatici e altri ancora.

La sinergia tra diversi specialisti è fondamentale per lo sviluppo di un farmaco sicuro ed efficace.

La sinergia tra diversi specialisti è fondamentale per lo sviluppo di un farmaco sicuro ed efficace.

Di per sé, poi, il processo complessivo può essere diviso in diverse fasi principali organizzate tra ricerca di base, fase pre-clinica, fase clinica e commercializzazione.

Il primo, fondamentale, passsaggio consiste nell’identificazione del target. Prima di sviluppare una molecola bisogna conoscere il bersaglio. Come detto nella puntata precedente bisogna conoscere i meccanismi molecolari di una malattia per poterla curare in modo efficace. Una patologia può essere provocata, ad esempio, da un enzima iperattivo e inibendolo si può eliminare la malattia. Una volta identificato l’enzima si può sviluppare un farmaco inibitore. Questa fase è gestita dalla ricerca di base e non ha una durata precisa, si parla comunque nell’ordine degli anni.

Quando il bersaglio è stato individuato, confermato e validato con assoluta certezza, bisogna trovare una molecola in grado di colpire tale bersaglio con la più alta efficienza e la maggiore precisione possibili. Questa, da un certo punto di vista, è la fase più caotica. Per trovare una singola molecola si può fare uno screening casuale di enormi banche dati formate da migliaia di molecole, anche se in realtà oggi si cerca di fare una ricerca più mirata.

Per trovare una molecola di interesse si possono studiare le molecole esistenti e i dati dalle osservazioni cliniche condotte precedentemente su altri composti. Spesso farmaci scartati perché ineffficaci per una patologia possono rivelarsi utili per combatterne un’alta.

Il Minoxidil è l'esempio di un farmaco "riscoperto" per un suo effetto secondario. Registrato nel 1979 come antipertensivo aveva tra gli effetti collaterali l'ipertricosi (aumento di pelosità). Venne registrato nuovamente come rimedio contro la caduta dei capelli.

Il Minoxidil è l’esempio di un farmaco “riscoperto” per un suo effetto secondario. Registrato nel 1979 come antipertensivo aveva tra gli effetti collaterali l’ipertricosi (aumento di pelosità). Venne registrato nuovamente come rimedio contro la caduta dei capelli.

Si possono inoltre cercare principi attivi in natura, da sempre fonte di molecole bioattive, oppure si possono usare approci più razionali: grazie alle moderne tecnologie di calcolo e simulazione, infatti, oggi nuove molecole possono essere progettate e disegnate in modo che possano interagire efficacemente con il bersaglio d’interesse.

Ultimo ma non ultimo va ricordato anche il caso. Sembra assurdo ma le scoperte più o meno casuali, la cosiddetta serendipity, hanno contribuito a passi fondamentali della ricerca medica. Si pensi alla penicillina o al Viagra, inizialmente studiato come trattamento per l’angina pectoris.

L'uso farmaceutico dei cannabinoidi è un esempio lampante di molecole bioattive scoperte in natura ed utilizzate in medicina.

L’uso farmaceutico dei cannabinoidi è un esempio lampante di molecole bioattive scoperte in natura ed utilizzate in medicina.

Dopo anni di studio e collaborazioni interdisciplinari, le decine di migliaia di molecole iniziali sono ridotte a poche centinaia. Una delle critiche principali riguarda la scarsa efficienza di questo processo a fronte delle migliaia di molecole scartate. Ma si tratta in verità di un processo di raffinamento e accurata selezione. Nessun prodotto o nessuna invenzione nasce da un singolo progetto e da un singolo tentativo.

Superata la ricerca di base, queste poche centinaia di molecole (circa il 5%) arrivano alla fase preclinica di Fase I e di Fase II. Queste sono le fasi in cui entranto in gioco le sperimentazioni in vitro (su colture cellulari e batteri) e le tanto discusse sperimentazioni in vivo (su modelli animali, in genere una molecola deve essere validata su due mammiferi differenti, come coniglio e topo per esempio).

In queste due fasi viene valutata la tossicità della molecola in acuto (singola somministrazione) o in cronico (somministrazione ripetute) e si studiano i possibili effetti pericolosi per la fisiologia dell’organismo. Ogni aspetto viene considerato, dai possibili danni al DNA alla cancerogenicità, dall’interferenza con la gravidanza (effetti tossici sull’embrione, sul feto o sulla madre) agli effetti sul sistema nervoso. Nessun sistema fisiologico viene ignorato. Dall’intestino al sangue tutto l’organismo viene analizzato per valutare la sicurezza della molecola.

Da questa lunga fase di sperimentazione preclinica escono una manciata di molecole che, se approvate per la sperimentazione clinica, diventano candidati farmaci. Per dare un’idea della rigidità dei test della fase preclinica basti pensare che su circa 250 molecole testate solo 5 arrivano alla fase clinica (circa il 2%)

Chiudo con un’immagine riassuntiva dell’imbuto che porta alla nascita di un farmaco a partire da migliaia di possibili candidati. Nella prossima puntata approfondirò la fase clinica (trial) e la commercializzazione finale.

Immagine riassuntiva della nascita di un farmaco. Da migliaia di possibili candidati alla singola molecola finale.

Immagine riassuntiva della nascita di un farmaco. Da migliaia di possibili candidati alla singola molecola finale.

[Se questo post vi è piaciuto e volete rimanere aggiornati non dimenticate di mettere “mi piace” sulla PAGINA FACEBOOK!]

L’evoluzione delle idee: il concetto di meme.

Inserito il

Personalmente considero “Il Gene Egoista” di Sir Richard Dawkins una pietra miliare ed una lettura fondamentale sia dal punto di vista scienfitico che filosofico. Per queste ragioni l’ho utilizzato in passato e lo utilizzerò ancora in futuro come fonte di nozioni e d’ispirazione per i alcuni dei miei post.

Dawkins è uno dei maggiori esponenti del neo-darwinismo e padre di un concetto estremamente potente: il meme.

Purtroppo il significato originale della parola, coniata dallo stesso Dawkins, è stato leggermente travisato e decontestualizzato, tanto che oggi questo neologismo è utilizzato per indicare immagini, personaggi  o brevi filmati che raggiungono una diffusione “virale” attraverso i social network.

Il termine è oramai fortemente associato al contesto non-sense dell’umorismo della Rete. Un fenomeno sociale talmente ampio da spingere Dawkins stesso a prestarsi ad un parallelismo tra la sua iniziale definizione di meme e l’attuale contesto nel quale la parole viene utilizzata. Di seguito potete vedere la “Memes Vs Genes song” introdotta da Dawkins in persona:

Ma, scherzi a parte, il concetto di meme è alla base di una teoria fondamentale: la teoria dell’evoluzione della mente umana.

Ma andiamo con ordine.

Ne “Il Gene Egoista” Dawkins si chiede in quale modo un astronauta atterrato su un pianeta sconosciuto potrebbe riconoscere una vita aliena, completamente differente dalla nostra. In sostanza, quali sono gli attributi fondamentali e universali (se esistono) che definiscono la vita?

A questo punto dovremmo ovviamente aprire una parentesi gigantesca e credo sia meglio tenere la definizione di vivente per un prossimo post.

In ogni modo, Dawkins sostiene che la vita, qualsiasi tipo di vita, debba possedere una caratteristica fondamentale, ovvero basarsi su

“l’evoluzione attraverso la sopravvivenza differenziale di entità che si replicano”

In parole povere entità individuali che si replicano e si evolvono sotto la spinta della selezione naturale.

Sul nostro pianeta questa caratteristica è propria della molecola di DNA e dei geni che di DNA sono fatti.

I geni sono i replicatori che si sono sviluppati sulla Terra. Essi creano copie di se stessi e, se adatti a vincere la sfida della selezione naturale, si diffondono nella popolazione, sopravvivono e si tramandano nel corso delle generazioni.

Rappresentazione artistica di un gene all’interno di un cromosoma.

La vita su un pianeta alieno, però, potrebbe essere basata su un altro tipo di replicatori, completamente differenti dai geni.

Tuttavia, secondo Dawkins, non c’è bisogno di andare su un altro pianeta per trovare un replicatore diverso dai geni. Senza doversi spingere nello spazio interstellare, infatti, un nuovo replicatore sembra essere nato sul nostro pianeta e, più precisamente, all’interno nella nostra testa.

Tale replicatore sarebbe nato dalla brodo primordiale rappresentato dalla cultura umana ed è, appunto, il meme. Il termine deriva dalla contrazione del termine in Greco Antico “mimeme” inteso come qualcosa che imita.

Il meme, secondo la teoria di Dawkins, sarebbe dunque l’unità replicante dell’evoluzione culturale umana. Un meme può essere una melodia, un’idea, una frase, una moda, una tecnica di costruzione.

In poche parole il meme è un’unità di trasmissione culturale che permette alla cultura umana di evolversi e tramandarsi di cervello in cervello, di generazione in generazione.

Il meme di Dio è uno dei migliori esempi di meme riportati ne “Il Gene Egoista”. L’idea di Dio è nata più volte in modo indipendente in differenti popolazioni in tutto il pianeta. Dio, nient’altro che un’invenzione umana, è un meme di grande successo che si è tramandato di generazione in generazione grazie alle dottrine religiose, all’arte e alla filosofia.

Così come i geni si tramandano e si diffondono all’interno del pool genico così i memi si tramandano e si diffondono all’interno del pool memico. Un’idea o una melodia in grado di far presa sarà destinata a diffondersi tra la popolazione, saltando di cervello in cervello grazie all’imitazione e contribuendo al progresso della cultura umana.

Come i geni anche i memi subiscono una pressione selettiva e, sempre come i geni, possono mutarsi e adattarsi con l’unico scopo di sopravvivere.

Il parallelismo tra l’evoluzione culturale e l’evoluzione genetica non è un concetto nuovo e Dawkins non è il primo ad averne parlato. Tuttavia il concetto di meme è altamente rivoluzionario perché introduce un nuovo replicatore indipendente all’interno della lotta per la sopravvivenza.

È vero che i memi nascono da un cervello che è il prodotto di una selezione di geni, ma questo non implica che i primi debbano essere asserviti ai secondi.

I memi, in quanto replicatori fondamentali, sono indipendenti dal sistema che li ha preceduti e, anzi, possono soprassederlo con forza.

La selezione naturale dei geni e l’evoluzione genetica sono infatti processi estremamenti lenti, mentre l’evoluzione culturale attraverso la selezione dei memi procede a velocità folli.

Un’idea può diffondersi rapidamente e può mutare e migliorarsi in modo altrettanto rapido ed efficiente. Probabilmente con un’efficienza superiore a quella dei geni stessi. Come ci ricorda Dawkins nel suo libro i geni di Socrate e Leonardo sono con ogni probabilità andati perduti per sempre, ma i loro memi, le loro idee, vanno ancora molto forte!

Per citare “V for Vendetta”:

 “Le idee sono a prova di proiettile…”

Le idee sono a prova di proiettile. Fotogrammi tratti dall’adattamento cinematografico di “V For Vendetta” di Alan Moore.

In ogni caso, all’interno contesto della teoria di Dawkins i geni egoisti “pensano” solamente alla propria sopravvivenza, aldilà dell’individuo che li ospita.

Nella teoria del gene egoista gli individui viventi sono macchine che i geni utilizzano per garantire la propria sopravvivenza. Allo stesso modo anche un meme è “interessato” solamente alla propria sopravvivenza. I cervelli sono contenitori e l’imitazione è il sistema di diffusione. In questo modo i memi sopravvivono, aldilà degli individui che li ospitano in un determinato momento temporale e si diffondono persino a discapito degli stessi geni che hanno permesso la nascita di questa nuova classe di replicatori.

Pensate ad esempio al meme del celibato. In un contesto religioso un simile meme ha un grande successo e la sua diffusione risulta rapida ed efficiente efficiente anche se ciò va a discapito dei geni che utilizzano la riproduzione come mezzo di replicazione e trasmissione.

In questa visione un po’ fatalista, però, Dawkins vede uno spiraglio che ci rende unici di fronte alla vita sulla Terra e si esplica nel mistero ancora irrisolto della nostra coscienza. Concludendo con le parole di Dawkins stesso:

“Abbiamo il potere di andare contro ai nostri geni egoisti e, se necessario, ai memi egoisti del nostro indottrinamento. […] Siamo cosruiti come macchine dei geni e coltivati come macchine dei memi, ma abbiamo il potere di ribellarci ai nostri creatori. Noi, unici sulla terra, possiamo ribellarci alla tirannia dei replicatori egoisti.”

[Se questo post vi è piaciuto e volete rimanere aggiornati non dimenticate di mettere “mi piace” sulla PAGINA FACEBOOK!]

Vita, Violenza e Virtù

Inserito il

Le riflessioni che voglio condividere con questo post si aggirano nella mia testa da un bel po’ vagando qua e la in attesa dello stimolo adeguato che mi permettesse di metterle nero su bianco.

L’input corretto alla fine mi è arrivato da un articolo di Vito Mancuso (e mai avrei pensato di poter essere imbeccato da un teologo) pubblicato da Repubblica alla fine dello scorso anno (e consultabile QUI).

Nell’articolo dal titolo “Sull’”antinaturalismo” degli animalisti”, Mancuso esprime le mie stesse convinzioni riguardo alla vita sulla Terra e al nostro rapporto con essa. Quelle stesse convinzioni che mi permettono di mangiare una bistecca o difendere la sperimentazione animale senza avere troppi rimorsi di coscienza.

Il ragionamento di Mancuso si basa su alcune affermazioni di Gandhi il quale riconosceva come “il consumo dei vegetali implica violenza” concludendo che

“la violenza è una necessità connaturata alla vita corporea”.

Una simile affermazione può sembrare assurda, soprattutto se enunciata proprio dal padre della non-violenza, ma in realtà evidenzia una elevata comprensione della vita e delle relazioni tra i viventi.

Se con il termine violenza intendiamo il soggiogamento o l’uccisione di un organismo da parte di un altro essere vivente sarebbe ipocrita non riconoscere la citazione di Gandhi come vera. Citando l’articolo di Mancuso

“La nostra vita per esistere si deve nutrire di altra vita che deve necessariamente sopprimere”

La sopravvivenza di qualsiasi organismo vivente, infatti, presuppone lo sfruttamento o la morte di altri organismi viventi.

La mia sopravvivenza di individuo dipende dalla morte degli organismi di cui mi nutro (siano essi animali, piante o funghi) e dalla morte degli organismi che tentano di attaccarmi quotidianamente e che il mio sistema immunitario uccide con efficienza.

Questa continua lotta per la sopravvivenza è uno dei principali motori dell’evoluzione e, per quanto oggettivamente violenta, non può essere considerata crudele.

Perché un’azione come l’atto di nutrirsi possa esser considerata crudele, infatti, bisognerebbe postulare una gerarchia tra gli esseri viventi che conferisca ad alcuni esseri viventi un maggior “diritto alla sopravvivenza” rispetto ad altri. Poiché non credo che una gazzella sia migliore di un leonessa, non trovo niente di crudele nel fatto che la seconda possa nutrirsi della prima.

E qui arriviamo al concetto di unicità della vita sulla Terra. Come ho già discusso brevemente QUI, la vita sul nostro pianeta è una e unica: anche se milioni di anni di evoluzione hanno generato un’incredibile varietà di forme, qualsiasi organismo converge in un unico punto rappresentato da un mucchietto di molecole quali amminoacidi, acidi nucleici (DNA ed RNA) e lipidi.

La doppia elica del DNA. Condivisa da tutti gli organismi viventi sulla Terra.

Nessun organismo, anche se più complesso, è quindi migliore di altri ma ciascun organismo lotta per la propria sopravvivenza. Così come non trovo crudele la leonessa che caccia la gazzella, allo stesso modo non vedo nulla di intrisecamente malvagio nel batterio che tenta di infettarmi (questo però non implica che io non mi difenderò con ogni mio mezzo per impedire al batterio di prevalere).

La Natura è scevra da categorie come buono e cattivo ed è solo la nostra interpretazione della realtà a conferirle queste caratteristiche. Da un lato la morte ci spaventa perché non riusciamo a comprenderla a pieno e la associamo alla perdita di qualcuno a noi caro, dall’altro una forte empatia ci porta a tifare per la gazzella e ad innorridire quando una leonessa la ferisce a morte. Probabilmente se gli alberi avessero la linfa rossa proveremmo una simile sensazione di disagio nel vedere una mucca al pascolo.

La morte con la sua apparente violenza, però, non è altro che un aspetto della vita stessa che si trasforma in continuazione in una complessa rete dinamica. Una rete i cui nodi sono i singoli organismi connessi tra loro da ogni tipo di relazione: dal rapporto preda-predatore al parassitismo, dalla simbiosi al mutualismo (dal leone che caccia la gazzella alla formica che alleva l’afide, dalla tenia che infetta l’intestino umano all’uomo che alleva il maiale).

Una formica si prende cura del proprio allevamento di afidi.

Per questi motivi, come ci ricorca Mancuso nel suo articolo,

“nessun vivente può uscire indenne dalla catena di violenza di cui è impastata la vita, e per questo nessuno ha il diritto di tirare la prima pietra condannando chi mangia carne o chi sostiene la ricerca mediante sperimentazione animale”.

A questo punto vorrei precisare che non sto in alcun modo facendo un’apologia della violenza ne sto giustificando comportamenti criminali. In quanto esseri umani l’evoluzione ci ha donato strumenti estremamente potenti come la mente razionale e la coscienza silenziosa al di sopra di essa che permettono alla nostra specie di distinguersi nettamente dal resto dei viventi.

L’intelletto ha permesso alla nostra specie di formulare le leggi ed i comportamenti morali che permettono (teoricamente) alle nostre comunità di condurre un’esistenza bilanciata e pacifica. L’emancipazione data dalla ragione consente all’uomo di costruire società talmente stabili e floride da riuscire persino ad andare oltre i propri istinti compiendo scelte che nessun altro animale potrà mai nemmeno considerare.

Una scelta alimentare come quella di non mangiare carne o lo sviluppo di tecniche alternative alla sperimentazione animale, per esempio, sono comportamenti nobili che solo un individuo dotato di ragione e inserito in una comunità stabile e protetta può compiere. È la ragione che permette all’uomo di apprezzare una vita virtuosa quanto più possibile priva di violenza ed inutile sofferenza. È la ragione che consente all’uomo di capire che il rispetto per l’ambiente e per le altre forme di vita è vantaggioso per se stesso prima ancora che per il resto del pianeta. È la ragione che conferisce all’uomo la capacità di contemplare la Natura in ogni sua forma, di rispettarla e di preservarla.

Per concludere sono proprio le differenze (e non le uguaglianze) tra noi e il resto dei viventi ad essere alla base di alcune istanze tipiche dell’animalismo. Istanze che io stesso condivido. Anch’io auspico un futuro privo di sperimentazione animale, privo di colture e allevamenti intensivi, fatto di sostenibilità ambientale e utilizzo intelligente delle risorse. Ma tutto ciò senza dimenticare che una parte di strumentalità è congenita all’esistenza e che, per quanto emancipato, nessun organismo può distaccarsi completamente dalla rete di rapporti della vita. Per tutte queste ragioni non vedo nulla di moralmente sbagliato in un allevamento sostenibile, nella domesticazione di animali o in un uso etico di animali nella ricerca scientifica laddove non vi sia nessuna alternativa concreta.

[Se questo post vi è piaciuto e volete rimanere aggiornati non dimenticate di mettere un bel “mi piace” sulla PAGINA FACEBOOK!]

Perché d’autunno le foglie cambiano colore?

Si sta come

d’autunno

sugli alberi

le foglie

(Soldati, G. Ungaretti, 1918)

L’autunno è sicuramente la stagione che preferisco. Il contrasto tra i colori caldi assunti dalle foglie degli alberi ed il clima che si fa via via sempre più freddo sono l’espressione perfetta della transizione tra la frenetica attività dell’estate ed il letargico torpore invernale.

Ma come mai le foglie cambiano colore d’autunno?

Il colore verde delle foglie degli alberi, come ci viene insegnato fin da piccoli, è dovuto alla clorofilla.

La clorofilla è un pigmento fondamentale per il processo noto come fotosintesi clorofilliana grazie al quale le piante ricavano energia dalla luce solare.

Nelle cellule vegetali delle foglie la clorofilla si trova in “sacchetti” chiamati tilacoidi a loro volta impachettati in organelli cellulari noti come cloroplasti.

Rappresentazione di una cellula animale (a sinistra) e una cellula vegetale (a destra). Si possono notare numerose strutture comuni tra i due tipi di cellule (ad esempio il reticolo endoplasmatico liscio e rugoso, l’apparato di Golgi, il nucleo cellulare…). Tra le peculiarità della cellula vegetale vi sono i cloroplasti responsabili della conversione dell’energia luminosa in energia chimica utilizzabile per il metabolismo della pianta.

La clorofilla si associa a proteine presenti nei cloroplasti per formare dei fotosistemi che convertono l’energia luminosa in energia chimica utilizzabile per la sintesti di molecole organiche come i carboidrati (come il glucosio ad esempio).

Grazie a questa capacità le piante sono considerate organismi autotrofi, ovvero sono in grado di sintetizzare le proprie molecole organiche in modo autonomo, partendo da sostanze inorganiche e senza utilizzare energia derivata da altre molecole organiche (come facciamo invece noi organismi eterotrofi).

Cloroplasti ben visibili all’interno delle cellule vegetali.

Le foglie possono perciò essere considerate come delle fabbriche specializzate in cui l’energia proveniente dalla luce viene usata per convertire i nutrienti assorbiti dal terreno in molecole organiche utilizzabili per tutto il metabolismo della pianta stessa (in soldoni le piante si fanno il proprio cibo da sole). Durante la primavera e l’estate, quindi, le piante mantengono quantità elevate di clorofilla all’interno delle proprie foglie in modo da mantenere la fotosintesi a pieno ritmo e garantirsi tutti i nutrienti di cui hanno bisogno.

Con l’avvicinarsi delle stagioni fredde i giorni diventano sempre più corti e la luce a disposizione sempre più scarsa. Per le piante questo rappresenta un segnale, nel corso dell’inverno la fotosintesi non è più praticabile in quanto il rendimento delle fabbriche-foglie sarebbe minore dei costi di mantenimento delle fabbriche stesse.

Alle piante conviene perciò dismettere le fabbriche ed entrare in un periodo di quiescenza a metabolismo rallentato in cui vengono consumati i nutrienti prodotti nel corso delle stagioni calde e luminose.

Un bosco d’autunno

Per interrompere la produzione  nelle fabbriche-foglie le piante devono prima di tutto chiudere i cancelli. Questo processo si realizza tramite l’interruzione della produzione di auxina, un ormone vegetale. Normalmente l’auxina mantiene aperte le vie che vanno dalla pianta alla foglia e viceversa. Con l’arrivo dell’autunno la produzione di auxina si interrompe e alla base della foglia i vasi di trasporto della linfa vengono chiusi interrompendo qualsiasi scambio di nutrienti. Il sigillo, poi, induce il distacco della foglia dal ramo sul quale rimane solo una cicatrice.

Nel processo di smantellamento delle fabbriche-foglie tra le prime cose che vengono eliminate ci sono le macchine dedicate alla raccolta della luce: la produzione di clorofilla viene interrotta e quella esistente viene degradata.

Il colore verde così scompare  progressivamente lasciando spazio al rosso e al giallo, colori sempre presenti nella foglia ma generalmente coperti dalla massiccia quantità di clorofilla che domina su qualsiasi altro pigmento nel corso della primavera e dell’estate.

Il colore giallo delle foglie autunnali è dato dai carotenoidi, la cui produzione non dipende dalla luce e sono quindi sempre presenti nella foglia. I carotenoidi sono pigmenti molto noti ed il loro colore può variare dal giallo, all’arancione al rosso.

Il colore rosso o purpureo è invece dato da una classe di composti chiamati antociani o antocianine. Appartengono alla famiglia dei flavonoidi e, grazie al loro potere antiossidante, proteggono le foglie dai raggi ultravioletti del sole che, come per l’uomo, possono danneggiare il DNA contenuto all’interno del nucleo cellulare. Il colore degli antociani può variare dal rosso al blu.

I diversi colori delle foglie sono dovuti alla presenza di diversi pigmenti. Il verde della clorofilla, molto abbondante nelle foglie, in genere copre il rosso degli antociani e il giallo dei carotenoidi.

Le differenti sfumature delle foglie autunnali dipendono dalle quantità relative dei diversi pigmenti: una foglia con molti carotenoidi e pochi antociani sarà più gialla, viceversa una foglia con molti antociani e pochi carotenoidi sarà più rossa.

La clorofilla residua, poi, può contribuire a determinare il colore finale della foglia così come altri tipi di pigmenti. I tannini, ad esempio, sono responsabili del colore marrone delle foglie di quercia durante l’autunno.

Infine è opportuno ricordare che non tutte le piante perdono le foglie d’inverno. Come tutti ben sanno le conifere come pini ed abeti sono piante sempreverdi che mantengono le proprie sottilissime foglie ad ago sui rami durante tutto il periodo invernale.

Le caducifoglie (o decidue), invece, sono le piante descritte in questo post che perdono le foglie nella stagione sfavorevole (che in alcuni climi può anche essere la stagione secca).

Personalmente considero le piante organismi viventi estremamente affascinanti (in verità non credo esista un essere vivente che non trovi affascinante…), il loro ciclo stagionale è una meraviglia della fisiologia e un esempio magistrale di adattamento all’ambiente circostante e al clima. I loro colori d’autunno ed i rami spogli d’inverno, soprattutto di alberi molto vecchi, hanno un non so che di mistico ed evocativo.

[Se questo post vi è piaciuto e volete rimanere aggiornati non dimenticate di mettere un bel “mi piace” sulla PAGINA FACEBOOK!]

Che cos’è un retrovirus?

Il fiocco rosso, simbolo della lotta all’AIDS

Il primo dicembre, come ogni anno, si svolge la giornata mondiale per la lotta all’AIDS.

La sindrome da immunodeficienza acquisita è una malattia pandemica (che colpisce più aree geografiche in tutto il Mondo) che, ad oggi, ha contagiato più di 60 milioni di persone provocando 25 milioni di morti.

Questa patologia, riconosciuta ufficialmente nel 1981, colpisce il sistema immunitario rendendolo debole ed inefficiente. Le persone colpite sono in questo modo esposte a infezioni e patologie (tra cui anche tumori) che in genere verrebbero sconfitte da un normale sistema immunitario.

L’AIDS è provocata dal virus dell’immunodeficienza umana (HIV) derivato dal virus dell’immunodeficienza delle scimmie (SIV). Questo virus, trasmissibile per via sessuale, ematica o verticale (madre-figlio), si insinua nell’organismo ospite e attacca le cellule ricche di un particolare recettore chiamato CD4.

Nell’organismo umano le cellule che esprimono maggiormente il recettore CD4 sono i linfociti CD4+ del sistema immunitario. Questi linfociti hanno il ruolo fondamentale di coordinatori (o “direttori d’orchestra”) in quanto sono responsabili del reclutamento di diverse componenti del sistema immunitario a seconda del tipo di infezione che il corpo è chiamato a fronteggiare. Un numero inopportuno di linfociti CD4+ indebolisce tutto il sistema di difesa esponendo l’intero organismo agli attacchi degli agenti patogeni.

Linfocita al microscopio elettronico a scansione (Wikipedia)

I linfociti CD4+ sono il bersaglio principale del virus HIV ma, all’interno del corpo umano, si trovano altre cellule attaccabili dal virus in quanto dotate di recettore CD4. Tra queste cellule ci sono altre cellule del sistema immunitario come i linfociti B e linfociti T-CD8+, i precursori delle cellule del sangue, cellule dei vasi sanguigni, del sistema nervoso e delle pareti intestinali

Spesso si sente definire l’AIDS come malattia retrovirale e l’HIV come retrovirus. Ma cosa significa esattamente questo termine?

Virus e retrovirus….

Prima di tutto cerchiamo di definire cosa sia esattamente un virus.

Il termine virus deriva dal latino vīrus che significa “tossina, veleno”. Un virus è formato, in grosso modo, da una capsula che avvolge un genoma formato da pochi geni. Un virus in genere infetta una cellula iniettandovi il proprio genoma. Una volta all’interno della cellula questi pochi geni sequestrano i macchinari di replicazione della cellula stessa. In questo modo il virus si replica formando copie di se stesso che abbandonano la cellula uccidendola. I nuovi virus così formati potranno infettare (e uccidere) altre cellula e così via. Per la sua semplicità strutturale e per la sua incapacità a replicarsi in modo autonomo un virus viene definito come entità biologica e non come organismo vivente (se un virus sia effettivamente vivente o meno è ancora oggetto di discussione).

Definita brevemente la natura di un virus passiamo ora al secondo concetto fondamentale per capire il termine “retrovirus”: Il Dogma Centrale della Biologia Molecolare o Central Dogma (se chi legge è un fan di Neon Genesis Evangelion questo termine farà suonare più di un campanello).

Nel manga/anime Neon Genesis Evangelion il Central Dogma era il centro di comando del quartier generale della Nerv.

Il Dogma Centrale si riferisce al sistema tramite il quale l’informazione genetica contenuta nel DNA viene espressa in proteine funzionanti (e quindi in interi organismi viventi). Il Dogma prevede che l’informazione contenuta nella catena a doppia elica del DNA venga trascritta in RNA messaggero a singola elica il quale viene tradotto in proteine.

Schematizzazione del Dogma Centrale. Il DNA (che si autoreplica) viene trascritto in RNA tramite la trascrizione. l’RNA viene quindi tradotto in proteine tramite la traduzione.

Nonostante il nome, però, il Dogma Centrale è ben lontano dall’essere una regola assoluta ed inviolabile (come del resto tutto nella Scienza, e questo è il bello!). Esistono infatti numerosi casi di violazione del Dogma e i retrovirus ne sono un esempio.

I retrovirus sono caratterizzati da un genoma formato da RNA invece che DNA. La capsula del retrovirus, una volta all’interno della cellula infettata, libera alcune molecole di un enzima particolare chiamato retrotrascrittasi inversa.

Questo enzima è in grado di violare il Dogma percorrendo al contrario il primo passaggio del Dogma stesso, la trascrizione da DNA a RNA messaggero.

La retrotrascrittasi, infatti, retrotrascrive il genoma ad RNA del virus in DNA. Questo DNA virale retrotrascritto viene quindi incorporato nel genoma della cellula colpita che inizierà ad esprimere le proteine virali come se nulla fosse.

In questo modo il retrovirus piega i meccanismi di replicazione della cellula ai propri voleri. La cellula infettata diventerà una vera e propria fabbrica di produzione e assemblaggio dei virus i quali, una volta formati, abbandoneranno la cellula distruggendone la membrana provocandone così la morte.

Retrovirus HIV-1 (in verde) che abbandonano un linfocita morente gemmando dalla sua superficie (Wikipedia)

Il sistema terribile quanto ingegnoso garantisce prosperità al virus che può crescere ed espandersi fino a diventare una vera e propria epidemia.

Nonostante tutto la lotta all’AIDS continua e le buone notizie non mancano. Pur non esistendo ancora un vaccino o una cura definitiva, l’infenzione è in calo. Il Progamma per la lotta all’AIDS delle Nazioni Unite (UNAIDS), infatti, riporta una riduzione del 52% di nuove infezioni nei bambini e una riduzione globale tra adulti e bambini del 33% dal 2001 ad oggi.

[Se questo post vi è piaciuto e volete rimanere aggiornati non dimenticate di mettere un bel “mi piace” sulla PAGINA FACEBOOK!]

Uomo Vs resto della Vita: un post demotivante, o forse no.

Inserito il

Avete in mente quelle immagini di una galassia con una freccia e la scritta “VOI SIETE QUI” che ci ricordano quanto siamo insignificanti di fronte alla grandezza dell’Universo?

Dannazione! Quando hanno fatto la foto ero di spalle! La rifacciamo?

Abbastanza demotivante, vero? Però se consideriamo solo la Vita sul nostro pianeta le cose migliorano e noi esseri umani riacquistiamo la nostra importanza e centralità, o no?

La Vita sulla Terra è una e una sola. Tutti gli organismi che esistono, che sono esistiti e che esisteranno si basano sul carbonio e sulla stessa, identica molecola di DNA in un comune, per quanto intricato, cammino evolutivo.

La tassonomia è la disciplina che si occupa di organizzare gli organismi viventi in gruppi definiti secondo una precisa gerarchia che va dai tre Domini più grandi fino alle specie.

Secondo la gerarchia tassonomica, ad esempio, l’Uomo appartiene al dominio degli Eucarioti, del regno degli Animali, Phylum dei Cordati, della Classe dei Mammiferi, dell’Ordine dei Primati, della Famiglia degli Ominidi, del Genere Homo, della Specie Homo Sapiens (e l’ho pure fatta breve tagliando i vari subphylum, infraclassi, superordini e sottoregni…)

Questa complessità nella classificazione lascia già intuire quanto anche sul nostro pianeta forse non siamo dopotutto così rilevanti.

Si stima infatti che il numero complessivo di specie di organismi eucarioti (ovvero animali, piante e funghi; escludendo batteri e archei) attualmente presenti sulla Terra sia di circa 9 milioni, di cui gran parte ancora da scoprire. Da quando il buon Linneo ha iniziato a classificare gli esseri viventi a metà del XVIII secolo ad oggi sono state descritte circa 1.3 milioni di specie. Ciò significa che l’86% delle specie esistenti è ancora sconosciuto.

Sempre per darvi un’idea della rilevanza della specie umana all’interno della Vita date un’occhiata a questa immagine dell’albero della vita (visibile QUI in alta definizione) simile a quella della galassia presente all’inizio di questo post :

tree

L’albero della vita. Costruito utilizzando i dati raccolti dagli RNA di solo 3000 specie viventi

Il grafico, tra l’altro, diventa ancora più demotivante nel momento in cui si scopre che è stato costruito utilizzando i dati di SOLO tremila specie a fronte dei 9 milioni sopra citati.

Abbiamo quindi appurato che l’uomo è solo una specie su nove milioni ed è pure una specie abbastanza solitaria essendo l’unica esistente appartenente al genere Homo (gli ultimi nostri cugini, i Neanderthal, si sono estinti circa 30.000 anni fa); ma se consideriamo il numero di individui le cose migliorano?

Gli esseri umani al giorno d’oggi sono circa 7 miliardi. Un numero importante che potrebbe permetterci di fare la voce grossa… o forse le cose ci vanno male anche in questo caso…

La popolazione mondiale di galline nel 2003 era di 24 miliardi di individui e si stima che per ogni essere umano sulla Terra esistano circa 200 milioni di singoli insetti divisi in 950.000 specie note (l’80% di tutte le specie eucariote).

La popolazione mondiale di formiche è di circa 50,000,000,000,000,000 individui. Più di 7 milioni di formiche per ogni persona vivente.

Numeri incredibili che però appaiono insignificanti se solo ci spostiamo dal Dominio degli Eucarioti a quello dei Batteri.

I batteri sono microbi procarioti e si trovano ovunque, anche nel nostro intestino. In ogni grammo di terreno ci sono 40 milioni di singoli batteri. La popolazione mondiale di batteri è stimata in 5,000,000,000,000,000,000,000,000,000,000 (5X10^30) singoli individui, con una biomassa complessiva che supera quella di piante e animali.

Escherichia Coli (credit: Wikipedia)

Per darvi l’idea, e ricollegarci all’immagine della galassia, se mettessimo in fila indiana tutti i batteri otterremmo una linea continua in grado di percorrere il diametro della nostra galassia…. per diecimila volte….

Niente da fare, anche considerando il numero di individui gli esseri umani rimangono una piccola frazione della Vita.

Ma in fin dei conti questo non è poi così demoralizzante. Saremo anche individui di una piccola specie, di un piccolo pianeta in un grande Universo, ma ciascuno di noi porta con se l’incredibile unicità del proprio patrimonio genetico.

Provate a considerare la serie incredibile di eventi che ha portato alla vostra esistenza individuale. Immaginate il numero gigantesco di eventi casuali che si sono combinati per dare luogo alla vostra persona. Pensate solo alla linea parentale di ogni individuo: ciascuno di noi ha due genitori, quattro nonni, otto bisnonni, sedici trisavoli, trentadue quadrisavoli e così via.

Forse siamo pochi, forse siamo piccoli, ma siamo unici.

La nostra intelligenza, poi, è  un dono evolutivo che ci permette di avere un impatto sull’intero pianeta che supera i limiti delle nostre dimensioni; cerchiamo di usarla con saggezza.

[Se questo post vi è piaciuto e volete rimanere aggiornati non dimenticate di mettere un bel “mi piace” sulla PAGINA FACEBOOK!]

%d blogger hanno fatto clic su Mi Piace per questo: