Feed RSS

Archivi tag: genoma

Come nasce un farmaco?

Inserito il

Premessa: con questo post non voglio né difendere né attaccare le case farmaceutiche. L’intento di questo post è semplicemente quello di descrivere brevemente i passaggi che portano alla nascita di un farmaco.

Prima di cominciare vorrei però esprimere un paio di concetti sulla logica dell’industria del farmaco. Quando si parla di produzione di farmaci la critica principale si può riassumere con: le case farmaceutiche pensano solo al profitto.

Questa affermazione è tutto sommato vera, ma questo non implica per forza che la qualità dei farmaci sia scarsa o, peggio ancora, che aziende e medici vogliano far ammalare la gente per non rimanere senza lavoro (si sente pure questo, anche da note trasmissioni televisive, non faccio nomi). A logica sarebbe come dire che la polizia vorrebbe le strade piene di criminali o i pompieri le foreste sempre in fiamme.

Chi mi conosce sa quanto sia critico verso un sistema basato su capitalismo e consumismo, dominato dalle corporazioni. La prospettiva di un futuro distopico simile al “Brave New World” di Huxley mi fa semplicemente rabbrividire.

Nel Mondo Nuovo Huxley immagina un futuro distopico in cui gli esseri umani, divisi per caste e prodotti in fabbrica, vivono una vita  priva di ogni inibizione morale, in cui i rapporti tra individui sono superficiali, falsi e passeggeri. In questa società i farmaci la fanno da padrone.

Nel Mondo Nuovo Huxley immagina un futuro distopico in cui gli esseri umani, divisi per caste e prodotti in fabbrica, vivono una vita priva di ogni inibizione morale, in cui i rapporti tra individui sono superficiali, falsi e passeggeri. In questa società i farmaci la fanno da padrone.

D’altro canto, considerando il nostro sistema attuale, non riesco ad immaginare un modo di tutelare la salute di milioni di individui senza muovere ingenti somme di denaro. Il discorso del profitto è, come detto, vero, ma non rappresenta una critica effettiva. Qualsiasi impresa ha come obiettivo un profitto finale. Che produca olio, pasta, sigarette o smartphone qualsiasi azienda cercherà di avere un margine di profitto. Mi sembra una cosa scontata. Certo, come ci sono aziende che vendono olio scadente come extravergine esistono anche case farmaceutiche che pongono i propri interessi economici di fronte alla ricerca scientifica. I casi di aziende (farmaceutiche e non) con comportamenti criminali e spregiudicati esistono, sono documentati e, quando scoperti, i colpevoli sono giustamente perseguiti e condannati.

Questi casi, però non devono far perdere la fiducia nella ricerca. Per un medico criminale ne esistono centinaia onesti. Il fatto che possano esistere medici criminali non è un buon motivo per buttarsi tra le braccia di santoni e terapie pseudoscientifiche. Per fare un paragone spiccio: se un elettricista mi imbroglia facendomi un impianto scadente non abbandono l’elettricità in favore di barattoli pieni di lucciole; semplicemente chiamo un altro elettricista assicurandomi che sia più onesto del precedente.

Ma passiamo all’argomento principale del post.

Come nasce un farmaco?

Per comodità mi concentrerò sulle piccole molecole (come l’aspirina) e tralascerò altri tipi di farmaci come i farmaci biologici (enzimi, vaccini) o i dispositivi medici (protesi, strumentazioni diagnostiche).

Forse non tutti sanno che le grandi case farmaceutiche non sono gli unici attori nel processo di nascita di un nuovo farmaco. Laboratori indipendenti e Università sono infatti attivamente coinvolti nel percorso. Spesso può succedere, ad esempio, che una molecola venga scoperta o prodotta da un laboratorio universitario il quale, non disponendo né di fondi né di strutture adeguate, vende il brevetto ad una casa farmaceutica la quale è in grado di sostenere e finanziare tutti i test necessari e di procedere poi alla commercializzazione finale. Una qualsiasi casa farmaceutica può godere dell’uso esclusivo del brevetto per un periodo limitato (in Italia sono 25 anni), dopodiché il brevetto decade, la molecola diventa pubblica e utilizzabile da qualunque altra azienda. Scaduto il brevetto un farmaco diventa quindi un cosiddetto farmaco equivalente (o generico).

In generale lo sviluppo di un nuovo farmaco è un processo molto lungo (fino a 16 anni) ed estremamente costoso (qui le cifre ballano, c’è chi parla di oltre un miliardo di euro a molecola a chi riporta cifre tra i 100 e 200 milioni di euro) che richiede il lavoro sinergico di numerosi esperti in settori anche molto differenti tra di loro.

La nascita di una singola molecola, infatti, vede la collaborazione di specialisti come farmacologi, chimici specializzati in sintesi, clinici, biologi molecolari, esperti di regolamentazione e normative, biochimici, bioinformatici e altri ancora.

La sinergia tra diversi specialisti è fondamentale per lo sviluppo di un farmaco sicuro ed efficace.

La sinergia tra diversi specialisti è fondamentale per lo sviluppo di un farmaco sicuro ed efficace.

Di per sé, poi, il processo complessivo può essere diviso in diverse fasi principali organizzate tra ricerca di base, fase pre-clinica, fase clinica e commercializzazione.

Il primo, fondamentale, passsaggio consiste nell’identificazione del target. Prima di sviluppare una molecola bisogna conoscere il bersaglio. Come detto nella puntata precedente bisogna conoscere i meccanismi molecolari di una malattia per poterla curare in modo efficace. Una patologia può essere provocata, ad esempio, da un enzima iperattivo e inibendolo si può eliminare la malattia. Una volta identificato l’enzima si può sviluppare un farmaco inibitore. Questa fase è gestita dalla ricerca di base e non ha una durata precisa, si parla comunque nell’ordine degli anni.

Quando il bersaglio è stato individuato, confermato e validato con assoluta certezza, bisogna trovare una molecola in grado di colpire tale bersaglio con la più alta efficienza e la maggiore precisione possibili. Questa, da un certo punto di vista, è la fase più caotica. Per trovare una singola molecola si può fare uno screening casuale di enormi banche dati formate da migliaia di molecole, anche se in realtà oggi si cerca di fare una ricerca più mirata.

Per trovare una molecola di interesse si possono studiare le molecole esistenti e i dati dalle osservazioni cliniche condotte precedentemente su altri composti. Spesso farmaci scartati perché ineffficaci per una patologia possono rivelarsi utili per combatterne un’alta.

Il Minoxidil è l'esempio di un farmaco "riscoperto" per un suo effetto secondario. Registrato nel 1979 come antipertensivo aveva tra gli effetti collaterali l'ipertricosi (aumento di pelosità). Venne registrato nuovamente come rimedio contro la caduta dei capelli.

Il Minoxidil è l’esempio di un farmaco “riscoperto” per un suo effetto secondario. Registrato nel 1979 come antipertensivo aveva tra gli effetti collaterali l’ipertricosi (aumento di pelosità). Venne registrato nuovamente come rimedio contro la caduta dei capelli.

Si possono inoltre cercare principi attivi in natura, da sempre fonte di molecole bioattive, oppure si possono usare approci più razionali: grazie alle moderne tecnologie di calcolo e simulazione, infatti, oggi nuove molecole possono essere progettate e disegnate in modo che possano interagire efficacemente con il bersaglio d’interesse.

Ultimo ma non ultimo va ricordato anche il caso. Sembra assurdo ma le scoperte più o meno casuali, la cosiddetta serendipity, hanno contribuito a passi fondamentali della ricerca medica. Si pensi alla penicillina o al Viagra, inizialmente studiato come trattamento per l’angina pectoris.

L'uso farmaceutico dei cannabinoidi è un esempio lampante di molecole bioattive scoperte in natura ed utilizzate in medicina.

L’uso farmaceutico dei cannabinoidi è un esempio lampante di molecole bioattive scoperte in natura ed utilizzate in medicina.

Dopo anni di studio e collaborazioni interdisciplinari, le decine di migliaia di molecole iniziali sono ridotte a poche centinaia. Una delle critiche principali riguarda la scarsa efficienza di questo processo a fronte delle migliaia di molecole scartate. Ma si tratta in verità di un processo di raffinamento e accurata selezione. Nessun prodotto o nessuna invenzione nasce da un singolo progetto e da un singolo tentativo.

Superata la ricerca di base, queste poche centinaia di molecole (circa il 5%) arrivano alla fase preclinica di Fase I e di Fase II. Queste sono le fasi in cui entranto in gioco le sperimentazioni in vitro (su colture cellulari e batteri) e le tanto discusse sperimentazioni in vivo (su modelli animali, in genere una molecola deve essere validata su due mammiferi differenti, come coniglio e topo per esempio).

In queste due fasi viene valutata la tossicità della molecola in acuto (singola somministrazione) o in cronico (somministrazione ripetute) e si studiano i possibili effetti pericolosi per la fisiologia dell’organismo. Ogni aspetto viene considerato, dai possibili danni al DNA alla cancerogenicità, dall’interferenza con la gravidanza (effetti tossici sull’embrione, sul feto o sulla madre) agli effetti sul sistema nervoso. Nessun sistema fisiologico viene ignorato. Dall’intestino al sangue tutto l’organismo viene analizzato per valutare la sicurezza della molecola.

Da questa lunga fase di sperimentazione preclinica escono una manciata di molecole che, se approvate per la sperimentazione clinica, diventano candidati farmaci. Per dare un’idea della rigidità dei test della fase preclinica basti pensare che su circa 250 molecole testate solo 5 arrivano alla fase clinica (circa il 2%)

Chiudo con un’immagine riassuntiva dell’imbuto che porta alla nascita di un farmaco a partire da migliaia di possibili candidati. Nella prossima puntata approfondirò la fase clinica (trial) e la commercializzazione finale.

Immagine riassuntiva della nascita di un farmaco. Da migliaia di possibili candidati alla singola molecola finale.

Immagine riassuntiva della nascita di un farmaco. Da migliaia di possibili candidati alla singola molecola finale.

[Se questo post vi è piaciuto e volete rimanere aggiornati non dimenticate di mettere “mi piace” sulla PAGINA FACEBOOK!]

Annunci

Fecondazione in vitro con tre genitori: basi teoriche e dibattito etico.

Inserito il
Fecondazione in vitro con tre genitori: basi teoriche e dibattito etico.

Il governo inglese ha espresso recentemente la volontà di procedere con la regolamentazione della “fecondazione in vitro con tre genitori”. Questo nome è estremamente sensazionalistico ed ha anche un che di inquietante. Un termine più adeguato sarebbe “transfer mitocondriale” ma immagino che non avrebbe lo stesso impatto sull’opinione pubblica e di sicuro venderebbe di meno.

In ogni modo, se i membri del parlamento britannico dovessero approvare il regolamento, l’Inghilterra diverrebbe il primo Paese al Mondo a legalizzare e promuovere questa tecnica prima della fine del 2014.

Ma in cosa consiste questo trattamento? E a cosa serve?

Per capire a fondo la natura di questa terapia dobbiamo prima fare un rapido ripasso di biologia cellulare.

Gli animali (noi compresi), le piante, i funghi e numerosi microrganismi sono composti da cellule eucariote (ovvero il loro DNA è racchiuso in un nucleo centrale). Ogni cellula è delimitata una membrana che racchiude gli organelli, strutture molecolari che svolgono determinati compiti indispensabili alla vita della cellula stessa.

Tra questi organelli troviamo i mitocondri.

Rappresentazione in sezione di una cellula eucariote con alcuni dei suoi organelli principali. in viola si vede il nucelo centrale che ospita il DNA, mentre i mitocondri sono rappresentati in marrone chiaro

I mitocondri svolgono il ruolo principale di “centrali energetiche” della cellula fornendole il carburante necessario al funzionamento di tutti i suoi apparati. La particolarità di questi organelli risiede nel fatto che essi derivano da batteri ancestrali che entrarono in simbiosi con le cellule eucariotiche più o meno un miliardo e mezzo di anni fa.

La Teoria endosimbiontica dell’origine dei mitocondri

Le cellule accolsero i batteri all’interno della propria membrana dando loro protezione in cambio di energia (già, nella realtà i simbionti, pur essendo affascinanti, non corrispondono esattamente all’immagine del buon vecchio Venom… e forse è meglio così ).

Venom, il simbionte alieno nemico di Spiderman

Derivando da antichi batteri, quindi, i mitocondri sono organelli dotati di un proprio DNA e si riproducono da soli per scissione binaria, proprio come i batteri da cui discendono.

Il DNA dei mitocondri va considerato a tutti gli effetti parte del genoma di ciascuno di noi anche se forma solo lo 0.2% del DNA totale di una cellula umana. Questa piccola porzione di DNA contiene solo 37 geni che sono veramente pochissimi se paragonati ai circa 23.000 geni presenti nel nucleo della cellula ospite.

Questi 37 geni, però, sono fondamentali per la salute dei mitocondri e se i mitocondri si ammalano anche la cellula ospite ne può risentire.

Le malattie mitocondriali, infatti, sono patologie legate ad alterazioni dei mitocondri che si riflettono prima sulle cellule ospiti e poi su tutto l’organismo. Disordini mitocondriali sono stati correlati a malattie metaboliche, cardiovascolari, al diabete, al morbo di Parkinson, alla sordità e persino all’obesità.

E sono proprio queste malattie ad essere l’oggetto degli studi pionieristici sul transfer mitocondriale (o fecondazione in vitro con tre genitori) sviluppati da un team di ricercatori dell’Università di Newcastle.

Le malattie dei mitocondri sono patologie genetiche ereditarie che colpiscono un bambino ogni 6.500 nati, il che le rende più comuni del cancro infantile e, fino ad oggi, nessuna cura efficace è mai stata sviluppata.

Le malattie dei mitocondri, tra l’altro, vengono trasmesse solo per via materna poiché lo spermatozoo, nell’atto di fecondazione, trasmette solamente il proprio DNA e tutte le strutture cellulari sono a carico dell’ovulo ricevente. Per questa ragione i mitocondri del padre vanno perduti mentre quelli della madre vengono trasmessi e solo una figlia femmina sarà in grado di trasmetterli ulteriormente alle generazioni successive. (a voler essere pignoli, quindi, ciascuno di noi non è l’esatta unione di due metà ma è per lo 0.2% più simile a sua madre che a suo padre).

Rappresentazione della fecondazione di una cellula. Il DNA nucleare deriva da entrambi i genitori mentre il DNA mitocondriale deriva solo dalla madre.

Una madre con una mutazione a livello del DNA mitocondriale trasmetterà la malattia a tutti i suoi figli. Per interrompere la trasmissione ereditaria i ricercatori di Newcastle hanno sviluppato una tecnica che prevede l’utilizzo di un ovulo proveniente da una madre donatrice (il famoso terzo genitore).

In pratica il nucleo dell’ovulo fecondato (che contiene il 99.8% del DNA dell’embrione) viene trasferito dall’ovulo della madre (con i mitocondri malati) all’ovulo non fecondato del donatore (con i mitocondri sani) a cui è stato precedentemente rimosso il nucleo (il procedimento può essere fatto prima o dopo la fecondazione da parte dello spermatozoo).

Per queste ragioni il bambino nato da una simile fecondazione avrà il 99.8% di DNA dei due genitori naturali più uno 0.2% di DNA da un “terzo genitore”, ovvero la donna donatrice che fornisce i mitocondri sani, che lo renderà sano e privo di qualsiasi patologia mitocondriale.

Schematizzazione della tecnica tratta dal sito del Guardian. In alto il procedimento fatto post-fecondazione, in basso il procedimento fatto pre-fecondazione

L’avvento di una tecnica simile, però, solleva numerosi interrogativi di tipo etico.

Coloro che maggiormente condannano questo metodo sostengono, ad esempio, che un’eventuale diffusione segnerebbe il primo passo verso l’eugenetica. L’affermazione è forte ma non del tutto scorretta in quanto la fecondazione in vitro con tre genitori va effettivamente a toccare, se pur in minima parte (come abbiamo visto), il patrimonio genetico dell’embrione.  Questa è la principale ragione che ha impedito fino ad oggi la legalizzazione della procedura anche se il DNA mitocondriale non contribuisce a determinare chi siamo (aspetto fisico, personalità…).

D’altro canto chi difende la tecnica sostiene che debellare le patologie mitocondriali è di fondamentale importanza per il benessere della razza umana. Sarah Norcross del Progress Educational Trust, che sostiene la scelta del governo inglese di promuovere la terapia, ha dichiarato che:

“sarebbe non etico non offrire questo trattamento se sicuro ed efficace nella prevenzione della nascita di bambini con malattie gravi”

Probabilmente non esiste una presa di posizione che non comporti delle scelte rischiose o comunque condivisibili al 100% ma, limitandosi all’aspetto tecnico e andando aldilà dei titoli sensazionalistici, non va dimenticato che parlare di “tre genitori” può non essere del tutto inesatto ma sicuramente è una forzatura che tende ad esagerare la realtà dei fatti. Il DNA mitocondriale, che abbiamo visto essere indispensabile, rimane pur sempre una parte minuscola (e comunque distaccata) dell’intero patrimonio genetico che determina la natura di un individuo.

[qui il LINK all’articolo pubblicato in merito sul The Guardian da cui ho tratto lo schema della tecnica]

[Se questo post vi è piaciuto e volete rimanere aggiornati non dimenticate di mettere un bel “mi piace” sulla PAGINA FACEBOOK!]

%d blogger hanno fatto clic su Mi Piace per questo: