Feed RSS

Archivi tag: pesci

A cosa servono le zanzare?

Inserito il

Arriva l’estate (pioggia permettendo) e con essa tornano le odiate zanzare. Dalle punture al fastidioso ronzio fino alle terribili malattie che questo insetto contribuisce a diffondere, è molto difficile, se non impossibile, trovare qualcuno che ami le zanzare o le trovi in qualche modo utili. Le zanzare appartengono a quella categoria di animali in grado di far vacillare i principi morali del più convinto degli animalisti o la fede del più fervente dei credenti. Se esiste un dio buono e misericordioso, perché ha creato le zanzare?

Riflessioni teologiche e animaliste a parte, la zanzara, oltre ad essere estremamente fastidiosa, è uno degli animali più pericolosi del mondo. Per essere precisi la zanzara occupa il primo posto nella classifica degli animali più mortali per l’uomo. Le malattie che questo insetto contribuisce a diffondere includono la malaria, la febbre gialla, la febbre dengue e la febbre da virus Zika. Secondo l’Organizzazione Mondiale della Sanità queste patologie colpiscono centinaia di milioni di esseri umani in tutto il mondo ogni anno, causando la morte di diverse milioni di individui.

Aedes_aegypti_CDC-Gathany

Aedes aegypti, responsabile della diffusione della febbre gialla, dello Zika virus, delle febbre dengue e di altre malattie i cui morti si contano a milioni ogni anno.

Ma esiste una qualche utilità in questi terribili insetti? Qual è il ruolo delle zanzare all’interno degli ecosistemi?

Il nostro pianeta conosce le zanzare da più di 100 milioni di anni (chi si ricorda la zanzara imprigionata in una goccia d’ambra in Jurassic Park?). Il loro habitat non ha confini, tanto che nemmeno la tundra artica di Canada e Russia è al sicuro dalle loro punture. Al giorno d’oggi sono state descritte più di 3500 specie di zanzare differenti, di cui solo 200 pungono gli esseri umani. Tra queste ultime è importante sottolineare che solo le femmine di zanzare, che necessitano di proteine per produrre le uova, pungono e succhiano il sangue. E qui arriviamo al primo ruolo utile delle zanzare in natura, quello di impollinazione dei fiori. L’alimento principale delle zanzare adulte, infatti, non è il sangue ma bensì il nettare dei fiori. Volando da una pianta all’altra contribuiscono alla diffusione del polline in modo simile alle api.

article-2381433-19B35E7D000005DC-276_634x470

John Hammond (al secolo l’attore Richard Attenborough)  rimira una zanzara imprigionata nell’ambra nel film Jurassic Park del 1993, diretto da Steven Spielberg

Un secondo contributo delle zanzare agli ecosistemi è quello di fornire biomassa alla catena alimentare di numerose specie. Le larve delle zanzare vivono in acqua dove si nutrono di materiale organico come alghe unicellulari e piante. Crescendo diventano facili prede per diversi tipi di pesci e, una volta completata la metamorfosi, le zanzare adulte sono un facile banchetto per uccelli e pipistrelli.

Questi sono quindi i “ruoli” principali delle zanzare in natura. Ma bastano a dare alle zanzare una parvenza di utilità? In un articolo comparso su Nature nel 2010 si prova ad immaginare un mondo senza zanzare e le opinioni degli specialisti riguardo ad un simile scenario sono differenti. Secondo alcuni l’estinzione delle zanzare avrebbe un impatto minimo in quanto la cicatrice ecologica lasciata verrebbe risanata velocemente mentre i ruoli (ad esempio l’impollinazione dei fiori) verrebbero rilevati da altri insetti, magari meno fastidiosi e pericolosi. Per altri, invece, il danno sarebbe ingente mettendo a rischio la sopravvivenza di numerose specie animali e vegetali che nelle zanzare trovano una sicura fonte di cibo e trasporto di polline.

Culex_sp_larvae-mosquito-larvae-wiki.png

Larve di zanzara che fluttuano in prossimità della superficie dell’acqua. Si possono notare i sifoni puntati verso l’alto grazie ai quali possono sopravvivere respirando aria.

Quel che è certo è che bisogna intervenire per prevenire i milioni di morti fatti ogni anno dalle zanzare. In tal senso un metodo che si sta rivelando molto efficace nel prevenire la diffusione di malattie mortali consiste nel liberare in natura zanzare geneticamente ingegnerizzate. Queste zanzare chiamate OX513A sono in grado di riprodursi, ma la loro progenie risulta sempre sterile. In questo modo la popolazione di zanzare nelle aree più colpite è calata drasticamente, riducendo così anche il contagio. L’approccio dell’ingegneria genetica, tra l’altro, è più sicuro e sostenibile di qualsiasi altro vecchio metodo in quanto permette di colpire solamente una determinata specie di zanzara, evitando la dispersione di insettici nell’ambiente che potrebbe nuocere ad altri animali e all’uomo stesso.

La riduzione della popolazione delle specie di zanzare vettori di malattie è quindi un obiettivo più che condivisibile ed auspicabile. Per le altre specie di zanzare, invece, dovremo continuare a sopportare il loro ronzio e le loro punture, per il bene degli ecosistemi che, purtroppo, dipendono da questi noiosi insetti.

Per ulteriori approfondimenti vi consiglio di visitare QUESTO sito e di guardare QUESTA interessante TED talk.

[Se questo post ti è piaciuto e vuoi rimanere aggiornato/a non dimenticare di mettere mi piace” sulla PAGINA FACEBOOK!]

Annunci

La scossa di un’anguilla elettrica.

Inserito il
Ingresso della California Academy of Science

Ingresso della California Academy of Science

La scorsa settimana mi trovavo a San Francisco per un convegno. Nel tempo libero ho visitato praticamente tutta la città, compresa la moderna California Academy of Science situata all’interno dell’enorme Golden Gate Park.

Girovagando tra le varie sezioni del museo, passando da un frammento di roccia lunare ad un simulatore di terremoti, mi sono ritrovato nell’area dedicata alla vita marina. Un vero e proprio acquario con decine di vasche multicolori!

1660226_10152234151841900_417309026_n

Una delle vasche all’interno dell’Academy.

Mentre passavo in rassegna ogni singola vasca mi sono imbattuto in un animale di cui, fino a quel momento, avevo solo sentito parlare in qualche documentario: la misteriosa anguilla elettrica.

Dopo essermi stupito di quanto piccoli fossero gli occhi in proporzione al resto del corpo mi sono accorto di non sapere effettivamente nulla di come questo bizzarro pesce riesca a produrre scosse elettriche abbastanza forti da stordire se non uccidere le proprie prede.

A quel punto il bambino curioso mai cresciuto che vive in me ha iniziato a strattonare la giacca al biologo apparentemente adulto che si affaccia all’esterno. Per questa ragione, una volta rientrato a casa e recuperato (più o meno) dal jet lag, ho fatto qualche ricerca per rispondere alle domande insistenti del mio fanciullo interiore.

DSCN7550

Il mio incontro con l’anguilla elettrica della California Academy of Science

Prima di addentrarci nell’argomento è però necessaria una brevissima introduzione sulla bioelettricità.

I fenomeni elettrici in natura sono estremamente comuni, basti pensare ai segnali generati e trasportati dai neuroni o all’attività del muscolo cardiaco. Le correnti elettriche negli organismi viventi non sono formate da elettroni in movimento ma bensì da flussi di ioni, ovvero atomi carichi elettricamente. Gli elementi responsabili delle maggiori correnti ioniche a livello cellulare sono il sodio, il potassio, il calcio, l’idrogeno (protoni) ed il cloro (o per meglio dire i rispettivi ioni di questi elementi).

All’interno di una cellula una corrente ionica si sviluppa grazie a particolari proteine che permettono il flusso degli ioni e sono chiamate con il nome fantascientifico di canali ionici.

I diversi tipi di ioni si accumulano in modo asimmetrico sui due lati della membrana cellulare che funge da isolante. La differenza di concentrazione ionica tra l’esterno e l’interno della cellula genera un potenziale eletttrico detto potenziale di membrana. Quando i canali ionici si aprono gli ioni possono fluire attraverso la membrana generando una corrente elettrica.

Rappresentazione semplificata di un canale ionico in membrana. L’apertura del canale permette agli ioni di fluire da un lato all’altro della membrana cellulare generanto una corrente elettrica.

Tra i fenomeni elettofisiologici più noti troviamo il potenziale d’azione, ed il logo di questo blog è una rappresentazione di un potenziale d’azione di una cellula cardiaca ventricolare.

Ma torniamo ora alle nostre anguille elettriche che… non sono anguille!

Ci sono rimasto male anch’io quando l’ho scoperto, ma le anguille elettriche non appartengono all’ordine degli Anguilliformi (a cui appartengono, per esempio, le murene).

Gli elettrofori, questo il loro vero nome, appartengono infatti all’unica specie esistente del genere Electrophorus ed la loro denominazione scientifica corretta è Electophorus electricus.

Questi pesci tipici di tutta l’America Meridionale sono predatori che possono raggiungere i due metri e mezzo di lunghezza e i 20kg di peso. Sono pesci aerobi obbligati, altra particolarità, e circa ogni 10 minuti devono emergere per respirare aria.

Vivono in acque torbide caratterizzate da una scarsa visibilità. Per ovviare a questo problema le anguille elettriche, come altri pesci elettrofori, sono dotate di un organo elettrico debole che utilizzano per orientarsi e individuare le prede: generando un campo elettrico debole sono in grado di percepire perturbazioni all’interno del campo stesso date dal transito di altri animali.

È probabile che proprio da questo organo elettrico debole si sia evoluta l’arma letale rappresentata dall’organo elettrico forte che forma circa l’80% del corpo dell’anguilla elettrica. Questo organo specializzato è in grado di genereare scariche nell’ordine delle centinaia di Volt! Le scariche, comunque, durano meno di 2 millisecondi e hanno un’intensità ridotta (circa 1A). È quindi improbabile che un uomo adulto possa rimanere ucciso da un attacco di un anguilla elettrica.

Breve stacco: nel video sottostante un’anguilla elettrica viene usata per illuminare un albero di Natale.

Tornando seri. L’organo elettrico che, come detto, occupa gran parte del corpo dell’animale (gli organi vitali sono concentrati vicino alla testa) è formato da cellule muscolari specializzate chiamate elettrociti.

Gli elettrociti sono impacchettati e orientati all’interno dell’organo elettrico formando una struttura simile ad una pila di Volta (tra l’altro sembra che sia Galvani e che Volta siano stati ispirati proprio da studi condotti sull’anguilla elettrica).

Ciascun elettrocita possiede un lato liscio a contatto con le fibre nervose e rivolto verso la coda dell’animale, ed un lato frastagliato orientato verso la testa. I canali ionici presenti sulle membrane dei due lati della cellula permettono all’elettrocita di creare una differenza di potenziale tra l’interno e l’esterno della membrana che si aggira intorno ai 0.15V.

In sostanza ciascuno elettrocita, grazie ai canali ionici, si carica in pararello di una piccola differenza di potenziale.

Quando rileva una preda il sistema nervoso dell’anguilla elettrica manda un segnale alle terminazioni nervose in contatto con ciascun elettrocita. Con una quasi perfetta simultaneità (i cui meccanismi sono ancora poco chiari) migliaia di elettrociti si scaricano in serie, sommando i loro piccoli potenziali individuali fino a raggiungere valori impressionanti intorno ai 400-600V (un fenomeno analogo a quello di un generatore di Marx).

La corrente elettrica fluisce così attraverso il corpo dell’elettroforo dalla coda verso la testa diffondendosi poi nell’ambiente circostante grazie agli ioni disciolti nell’acqua (rientrando poi nella coda dell’anguilla elettrica e chiudendo il circuito).

Per i piccoli animali di cui l’elettroforo si nutre non c’è scampo…

Visti i meccanismi alla base della fisiologia dell’anguilla elettrica sorge però un altro dubbio: perché l’anguilla elettrica non rimane folgorata dalla propria corrente?

La domanda è legittima e la risposta non è scontata. Anzi, si può dire che non si sappia con certezza come mai l’elettroforo non sia soggetto alla propria scarica elettrica.

Le ipotesi in merito sostengono che in realtà le anguille elettriche prendano effettivamente la scossa, ma che abbiano sviluppato una sorta di resistenza (per esempio percependo lo shock ma non provandone dolore) oppure la particolare conformazione anatomica (con gli organi vitali impacchettati vicino alla testa)  garantisce all’animale un isolamento elettrico che lo protegge dallo shock.

Chiudo con una nota divertente. Cercando articoli per scrivere questo post mi sono imbattuto in QUESTO splendido falso articolo scientifico in cui le caratteristiche dell’anguilla elettrica vengono confrontate con le analoghe capacità del topo elettrico… il famoso P. pikachu!

 [Se questo post vi è piaciuto e volete rimanere aggiornati non dimenticate di mettere “mi piace” sulla PAGINA FACEBOOK!]

%d blogger hanno fatto clic su Mi Piace per questo: