Feed RSS

Archivi tag: potassio

Perché le banane non hanno semi?

Inserito il

La banana è uno dei frutti più diffusi e consumati dall’uomo. Domesticata originariamente nella Papua Nuova Guinea, oggi viene coltivata in più di 107 differenti paesi (India in testa) con una produzione globale che supera ampiamente i 100 milioni di tonnellate all’anno.

Ma vi siete mai chiesti come mai le banane non hanno semi? E se non hanno semi, come si riproducono?

La risposta è semplice ma forse non troppo immediata. Per poter capire il mistero che si cela dietro questa falsa bacca della famiglia delle Musaceae dobbiamo introdurre il concetto di ploidia.

In genetica con il termine ploidia si indica il numero delle serie di cromosomi presenti all’interno di una cellula. Prendiamo come esempio l’uomo. Sappiamo che ciascuna nostra cellula somatica (ovvero una qualsiasi cellula che non sia uno spermatozoo o un ovulo) ha 46 cromosomi, 23 ereditati dal padre e 23 dalla madre.

Quinidi abbiamo due serie di cromosomi omologhi e possiamo definirci organismi diploidi o 2N.

I 46 cromosomi umani organizzati in 23 coppie (due serie di cromosomi omologhi)

I 46 cromosomi umani organizzati in 23 coppie (due serie di cromosomi omologhi). I cromosomi X e Y formano la coppia numero 23.

I nostri gameti invece (spermatozoi e ovuli) sono aploidi  (1N) in quanto hanno una sola serie di 23 cromosomi. Unendosi ad un gamete del sesso opposto formeranno una cellula somatica con 46 cromosomi.

In genere numeri pari di ploidia sono ben tollerati dagli organismi e si parla di euploidia (buona ploidia), mentre i numeri dispari sono difficilmente gestibili nella riproduzione binaria di una cellula e in questo caso di parla di aneuploidia.

Anche le banane, in quanto organismi viventi, hanno cellule contenenti cromosomi e anche in questo caso un numero pari di serie di cromosomi è ben tollerato. Una banana diploide (2N) può produrre gameti aploidi (1N), una banana tetraploide (4N) produrrà gameti diploidi (2N), e così via.

Le banane che mangiamo tutti i giorni, invece, sono triploidi (3N) in quanto derivano dall’incrocio tra una banana 4N e una 2N. Come detto sopra un numero dispari di ploidia è difficile da gestire durante la riproduzione. Per questo motivo le banane 3N non riescono a produrre gameti bilanciati e risultano sterili e prive di semi

Ma se sono sterili e senza semi, come si possono riprodurre?

Semplice, per riproduzione asessuata. Quando un banano viene abbattutto per la raccolta dei suoi frutti un suo pollone radicale (nuove piante che si sviluppano dalle radici delle pianta madre) viene ripiantato per far nascere un nuovo banano che darà nuovi frutti.

Questo significa che le banane che mangiamo sono tutte cloni della stessa banana!

Tutte le banane che mangiamo appartengon infatti alla varietà Cavendish ed essendo prodotte senza incroci sono tutte geneticamente molto simili tra loro. Una bassa variabilità genetica comporta un’elevata vulnerabilità agli agenti patogeni. La mancanza di incroci, infatti, limita la diffusione di geni di resistenza che possono proteggere da attacchi di agenti patogeni come virus o funghi.

La banana Cavendish. La maggiormente diffusa nel commercio mondiale.

La vulnerabilità delle banane non è un concetto puramente teorico. Fino agli anni 50, infatti, a dominare il mercato mondiale era la varietà Gros Michel, la quale però fu quasi portata all’estinzione da un fungo che distrusse tutte le coltivazioni mondiali (risparmiando solo parte dell’Asia).

La Gros Michel fu quindi soppiantata dalla Cavendish che mangiamo oggi, ma anch’essa potrebbe estinguersi in pochi anni per via di nuovi funghi e nuove malattie.

Ricercatori in tutto il mondo stanno tentando di salvare la Cavendish e la produzione mondiale di banane attraverso le moderne tecniche di ingegneria genetica (come ho spiegato in un altro POST gli OGM sono solo una tecnica, che, come un questo caso, può essere usata in modo utile e costruttivo).

Curiosità: le banane sono naturalmente lievemente radioattive in quanto ricche di potassio (niente di pericoloso, molti cibi sono lievemente radioattivi). La dose equivalente ad una banana è un’unità di misura che esprime la quantità di radiazioni assorbite. Per fare un esempio l’esposizione alle radiazioni della popolazione italiana nei 10 anni successivi al disastro di Chernobyl è stimata intorno alle 11,5 banane al giorno.

[IMPORTANTE NOTA INTEGRATIVA: In seguito ad un commento lasciato da un lettore, che ringrazio, ho deciso di integrare questo post con informazioni che, per mia ignoranza, erano state escluse dal post originale. Le banane vengono generalmente colte acerbe ed il processo di maturazione una volta staccate è in realtà una decomposizione che aumenta la concentrazione di zuccheri nel frutto e rende il frutto mangiabile. Se la banana viene lasciata a lungo sulla pianta l’effettivo processo di maturazione può portare alla formazione di piccoli semi vestigiali (visibili nella banana come file di fini grani neri). Questi sono sterili e sono residui dei semi delle piante ancestrali dalle quali la banana moderna discende. Potete approfondire ulteriormente l’argomento in articoli dedicati alla selezione delle banane moderne QUI e QUI.]

[Se questo post ti è piaciuto e vuoi rimanere aggiornato/a non dimenticare di mettere “mi piace” sulla PAGINA FACEBOOK!]

Annunci

La scossa di un’anguilla elettrica.

Inserito il
Ingresso della California Academy of Science

Ingresso della California Academy of Science

La scorsa settimana mi trovavo a San Francisco per un convegno. Nel tempo libero ho visitato praticamente tutta la città, compresa la moderna California Academy of Science situata all’interno dell’enorme Golden Gate Park.

Girovagando tra le varie sezioni del museo, passando da un frammento di roccia lunare ad un simulatore di terremoti, mi sono ritrovato nell’area dedicata alla vita marina. Un vero e proprio acquario con decine di vasche multicolori!

1660226_10152234151841900_417309026_n

Una delle vasche all’interno dell’Academy.

Mentre passavo in rassegna ogni singola vasca mi sono imbattuto in un animale di cui, fino a quel momento, avevo solo sentito parlare in qualche documentario: la misteriosa anguilla elettrica.

Dopo essermi stupito di quanto piccoli fossero gli occhi in proporzione al resto del corpo mi sono accorto di non sapere effettivamente nulla di come questo bizzarro pesce riesca a produrre scosse elettriche abbastanza forti da stordire se non uccidere le proprie prede.

A quel punto il bambino curioso mai cresciuto che vive in me ha iniziato a strattonare la giacca al biologo apparentemente adulto che si affaccia all’esterno. Per questa ragione, una volta rientrato a casa e recuperato (più o meno) dal jet lag, ho fatto qualche ricerca per rispondere alle domande insistenti del mio fanciullo interiore.

DSCN7550

Il mio incontro con l’anguilla elettrica della California Academy of Science

Prima di addentrarci nell’argomento è però necessaria una brevissima introduzione sulla bioelettricità.

I fenomeni elettrici in natura sono estremamente comuni, basti pensare ai segnali generati e trasportati dai neuroni o all’attività del muscolo cardiaco. Le correnti elettriche negli organismi viventi non sono formate da elettroni in movimento ma bensì da flussi di ioni, ovvero atomi carichi elettricamente. Gli elementi responsabili delle maggiori correnti ioniche a livello cellulare sono il sodio, il potassio, il calcio, l’idrogeno (protoni) ed il cloro (o per meglio dire i rispettivi ioni di questi elementi).

All’interno di una cellula una corrente ionica si sviluppa grazie a particolari proteine che permettono il flusso degli ioni e sono chiamate con il nome fantascientifico di canali ionici.

I diversi tipi di ioni si accumulano in modo asimmetrico sui due lati della membrana cellulare che funge da isolante. La differenza di concentrazione ionica tra l’esterno e l’interno della cellula genera un potenziale eletttrico detto potenziale di membrana. Quando i canali ionici si aprono gli ioni possono fluire attraverso la membrana generando una corrente elettrica.

Rappresentazione semplificata di un canale ionico in membrana. L’apertura del canale permette agli ioni di fluire da un lato all’altro della membrana cellulare generanto una corrente elettrica.

Tra i fenomeni elettofisiologici più noti troviamo il potenziale d’azione, ed il logo di questo blog è una rappresentazione di un potenziale d’azione di una cellula cardiaca ventricolare.

Ma torniamo ora alle nostre anguille elettriche che… non sono anguille!

Ci sono rimasto male anch’io quando l’ho scoperto, ma le anguille elettriche non appartengono all’ordine degli Anguilliformi (a cui appartengono, per esempio, le murene).

Gli elettrofori, questo il loro vero nome, appartengono infatti all’unica specie esistente del genere Electrophorus ed la loro denominazione scientifica corretta è Electophorus electricus.

Questi pesci tipici di tutta l’America Meridionale sono predatori che possono raggiungere i due metri e mezzo di lunghezza e i 20kg di peso. Sono pesci aerobi obbligati, altra particolarità, e circa ogni 10 minuti devono emergere per respirare aria.

Vivono in acque torbide caratterizzate da una scarsa visibilità. Per ovviare a questo problema le anguille elettriche, come altri pesci elettrofori, sono dotate di un organo elettrico debole che utilizzano per orientarsi e individuare le prede: generando un campo elettrico debole sono in grado di percepire perturbazioni all’interno del campo stesso date dal transito di altri animali.

È probabile che proprio da questo organo elettrico debole si sia evoluta l’arma letale rappresentata dall’organo elettrico forte che forma circa l’80% del corpo dell’anguilla elettrica. Questo organo specializzato è in grado di genereare scariche nell’ordine delle centinaia di Volt! Le scariche, comunque, durano meno di 2 millisecondi e hanno un’intensità ridotta (circa 1A). È quindi improbabile che un uomo adulto possa rimanere ucciso da un attacco di un anguilla elettrica.

Breve stacco: nel video sottostante un’anguilla elettrica viene usata per illuminare un albero di Natale.

Tornando seri. L’organo elettrico che, come detto, occupa gran parte del corpo dell’animale (gli organi vitali sono concentrati vicino alla testa) è formato da cellule muscolari specializzate chiamate elettrociti.

Gli elettrociti sono impacchettati e orientati all’interno dell’organo elettrico formando una struttura simile ad una pila di Volta (tra l’altro sembra che sia Galvani e che Volta siano stati ispirati proprio da studi condotti sull’anguilla elettrica).

Ciascun elettrocita possiede un lato liscio a contatto con le fibre nervose e rivolto verso la coda dell’animale, ed un lato frastagliato orientato verso la testa. I canali ionici presenti sulle membrane dei due lati della cellula permettono all’elettrocita di creare una differenza di potenziale tra l’interno e l’esterno della membrana che si aggira intorno ai 0.15V.

In sostanza ciascuno elettrocita, grazie ai canali ionici, si carica in pararello di una piccola differenza di potenziale.

Quando rileva una preda il sistema nervoso dell’anguilla elettrica manda un segnale alle terminazioni nervose in contatto con ciascun elettrocita. Con una quasi perfetta simultaneità (i cui meccanismi sono ancora poco chiari) migliaia di elettrociti si scaricano in serie, sommando i loro piccoli potenziali individuali fino a raggiungere valori impressionanti intorno ai 400-600V (un fenomeno analogo a quello di un generatore di Marx).

La corrente elettrica fluisce così attraverso il corpo dell’elettroforo dalla coda verso la testa diffondendosi poi nell’ambiente circostante grazie agli ioni disciolti nell’acqua (rientrando poi nella coda dell’anguilla elettrica e chiudendo il circuito).

Per i piccoli animali di cui l’elettroforo si nutre non c’è scampo…

Visti i meccanismi alla base della fisiologia dell’anguilla elettrica sorge però un altro dubbio: perché l’anguilla elettrica non rimane folgorata dalla propria corrente?

La domanda è legittima e la risposta non è scontata. Anzi, si può dire che non si sappia con certezza come mai l’elettroforo non sia soggetto alla propria scarica elettrica.

Le ipotesi in merito sostengono che in realtà le anguille elettriche prendano effettivamente la scossa, ma che abbiano sviluppato una sorta di resistenza (per esempio percependo lo shock ma non provandone dolore) oppure la particolare conformazione anatomica (con gli organi vitali impacchettati vicino alla testa)  garantisce all’animale un isolamento elettrico che lo protegge dallo shock.

Chiudo con una nota divertente. Cercando articoli per scrivere questo post mi sono imbattuto in QUESTO splendido falso articolo scientifico in cui le caratteristiche dell’anguilla elettrica vengono confrontate con le analoghe capacità del topo elettrico… il famoso P. pikachu!

 [Se questo post vi è piaciuto e volete rimanere aggiornati non dimenticate di mettere “mi piace” sulla PAGINA FACEBOOK!]

%d blogger hanno fatto clic su Mi Piace per questo: