Feed RSS

Archivi tag: raggi uv

Perché d’autunno le foglie cambiano colore?

Si sta come

d’autunno

sugli alberi

le foglie

(Soldati, G. Ungaretti, 1918)

L’autunno è sicuramente la stagione che preferisco. Il contrasto tra i colori caldi assunti dalle foglie degli alberi ed il clima che si fa via via sempre più freddo sono l’espressione perfetta della transizione tra la frenetica attività dell’estate ed il letargico torpore invernale.

Ma come mai le foglie cambiano colore d’autunno?

Il colore verde delle foglie degli alberi, come ci viene insegnato fin da piccoli, è dovuto alla clorofilla.

La clorofilla è un pigmento fondamentale per il processo noto come fotosintesi clorofilliana grazie al quale le piante ricavano energia dalla luce solare.

Nelle cellule vegetali delle foglie la clorofilla si trova in “sacchetti” chiamati tilacoidi a loro volta impachettati in organelli cellulari noti come cloroplasti.

Rappresentazione di una cellula animale (a sinistra) e una cellula vegetale (a destra). Si possono notare numerose strutture comuni tra i due tipi di cellule (ad esempio il reticolo endoplasmatico liscio e rugoso, l’apparato di Golgi, il nucleo cellulare…). Tra le peculiarità della cellula vegetale vi sono i cloroplasti responsabili della conversione dell’energia luminosa in energia chimica utilizzabile per il metabolismo della pianta.

La clorofilla si associa a proteine presenti nei cloroplasti per formare dei fotosistemi che convertono l’energia luminosa in energia chimica utilizzabile per la sintesti di molecole organiche come i carboidrati (come il glucosio ad esempio).

Grazie a questa capacità le piante sono considerate organismi autotrofi, ovvero sono in grado di sintetizzare le proprie molecole organiche in modo autonomo, partendo da sostanze inorganiche e senza utilizzare energia derivata da altre molecole organiche (come facciamo invece noi organismi eterotrofi).

Cloroplasti ben visibili all’interno delle cellule vegetali.

Le foglie possono perciò essere considerate come delle fabbriche specializzate in cui l’energia proveniente dalla luce viene usata per convertire i nutrienti assorbiti dal terreno in molecole organiche utilizzabili per tutto il metabolismo della pianta stessa (in soldoni le piante si fanno il proprio cibo da sole). Durante la primavera e l’estate, quindi, le piante mantengono quantità elevate di clorofilla all’interno delle proprie foglie in modo da mantenere la fotosintesi a pieno ritmo e garantirsi tutti i nutrienti di cui hanno bisogno.

Con l’avvicinarsi delle stagioni fredde i giorni diventano sempre più corti e la luce a disposizione sempre più scarsa. Per le piante questo rappresenta un segnale, nel corso dell’inverno la fotosintesi non è più praticabile in quanto il rendimento delle fabbriche-foglie sarebbe minore dei costi di mantenimento delle fabbriche stesse.

Alle piante conviene perciò dismettere le fabbriche ed entrare in un periodo di quiescenza a metabolismo rallentato in cui vengono consumati i nutrienti prodotti nel corso delle stagioni calde e luminose.

Un bosco d’autunno

Per interrompere la produzione  nelle fabbriche-foglie le piante devono prima di tutto chiudere i cancelli. Questo processo si realizza tramite l’interruzione della produzione di auxina, un ormone vegetale. Normalmente l’auxina mantiene aperte le vie che vanno dalla pianta alla foglia e viceversa. Con l’arrivo dell’autunno la produzione di auxina si interrompe e alla base della foglia i vasi di trasporto della linfa vengono chiusi interrompendo qualsiasi scambio di nutrienti. Il sigillo, poi, induce il distacco della foglia dal ramo sul quale rimane solo una cicatrice.

Nel processo di smantellamento delle fabbriche-foglie tra le prime cose che vengono eliminate ci sono le macchine dedicate alla raccolta della luce: la produzione di clorofilla viene interrotta e quella esistente viene degradata.

Il colore verde così scompare  progressivamente lasciando spazio al rosso e al giallo, colori sempre presenti nella foglia ma generalmente coperti dalla massiccia quantità di clorofilla che domina su qualsiasi altro pigmento nel corso della primavera e dell’estate.

Il colore giallo delle foglie autunnali è dato dai carotenoidi, la cui produzione non dipende dalla luce e sono quindi sempre presenti nella foglia. I carotenoidi sono pigmenti molto noti ed il loro colore può variare dal giallo, all’arancione al rosso.

Il colore rosso o purpureo è invece dato da una classe di composti chiamati antociani o antocianine. Appartengono alla famiglia dei flavonoidi e, grazie al loro potere antiossidante, proteggono le foglie dai raggi ultravioletti del sole che, come per l’uomo, possono danneggiare il DNA contenuto all’interno del nucleo cellulare. Il colore degli antociani può variare dal rosso al blu.

I diversi colori delle foglie sono dovuti alla presenza di diversi pigmenti. Il verde della clorofilla, molto abbondante nelle foglie, in genere copre il rosso degli antociani e il giallo dei carotenoidi.

Le differenti sfumature delle foglie autunnali dipendono dalle quantità relative dei diversi pigmenti: una foglia con molti carotenoidi e pochi antociani sarà più gialla, viceversa una foglia con molti antociani e pochi carotenoidi sarà più rossa.

La clorofilla residua, poi, può contribuire a determinare il colore finale della foglia così come altri tipi di pigmenti. I tannini, ad esempio, sono responsabili del colore marrone delle foglie di quercia durante l’autunno.

Infine è opportuno ricordare che non tutte le piante perdono le foglie d’inverno. Come tutti ben sanno le conifere come pini ed abeti sono piante sempreverdi che mantengono le proprie sottilissime foglie ad ago sui rami durante tutto il periodo invernale.

Le caducifoglie (o decidue), invece, sono le piante descritte in questo post che perdono le foglie nella stagione sfavorevole (che in alcuni climi può anche essere la stagione secca).

Personalmente considero le piante organismi viventi estremamente affascinanti (in verità non credo esista un essere vivente che non trovi affascinante…), il loro ciclo stagionale è una meraviglia della fisiologia e un esempio magistrale di adattamento all’ambiente circostante e al clima. I loro colori d’autunno ed i rami spogli d’inverno, soprattutto di alberi molto vecchi, hanno un non so che di mistico ed evocativo.

[Se questo post vi è piaciuto e volete rimanere aggiornati non dimenticate di mettere un bel “mi piace” sulla PAGINA FACEBOOK!]

Annunci

Perché ci abbronziamo: i meccanismi cellulari alla base di una perfetta abbronzatura

Quasi tutti gli organismi viventi sul nostro pianeta esistono in diversi colori. La pigmentazione della superficie esterna del corpo umano è un carattere altamente ereditario e regolato da fattori genetici, ambientali ed endocrini.

Il colore della nostra pelle è determinato dal quantità, dal tipo e dalla distribuzione di un pigmento inerte prodotto dagli strati profondi della pelle e chiamato melanina.

La melanina gioca diversi ruoli all’interno del nostro corpo e delle nostre comunità: dalla definizione dell’etnia alla termoregolazione. In questo post, però, mi concentrerò sul suo ruolo di protezione contro i raggi ultravioletti (UV) presenti nella radiazione solare.

Prima di entrare nel dettaglio del metabolismo della melanina procediamo con ordine partendo dalla struttura più ampia della pelle per arrivare progressivamente al microscopico livello dei singoli enzimi localizzati all’interno delle cellule della pelle stessa.

La pelle è uno degli organi più estesi del corpo umano ed è costantemente in contatto con l’ambiente esterno. È quindi necessario che sia dotata di efficaci meccanismi di difesa per proteggerci dalle minacce ambientali.

La pelle è divisa in due strati principali (l’epidermide superficiale e il derma più profondo) organizzati a loro volta in sottostrati minori.

L’epidermide, per esempio, ha uno spessore variabile tra i 5 e i 100 micrometri (milionesimi di metro, o millesimi di millimetro) e si organizza in 5 sottostrati differenti: lo strato basale (o germinativo) più profondo, lo strato spinoso, lo strato granuloso, lo strato lucido e lo strato corneo più superficiale.

Gli strati dell’epidermide. I cheratinociti maturano spostandosi verso gli strati superficiali accumulando cheratina e morendo diventando squame di pelle. (fonte: Wikipedia)

Ciascuno strato è caratterizzato da una particolare popolazione di cellule specializzate. I principali tipi di cellule che compongono l’epidermide sono due: i cheratinociti e i melanociti.

I cheratinociti si trovano in forma immatura (poco specializzati e con un alto tasso di proliferazione) nello strato basale e maturano spostandosi negli strati superiori accumulando progressivamente una proteina filamentosa chiamata cheratina. L’accumulo di cheratina raggiunge il massimo nello strato corneo dove i cheratinociti muoiono formando lo strato più superficiale della pelle che si desquama. Lo strato corneo riduce la perdita d’acqua attraverso la pelle e previene l’invasione di agenti patogeni e sostanze nocive.

Ai melanociti, invece, è affidata la produzione di melanina. Si trovano nello strato basale dell’epidermide e sono caratterizzati da ramificazioni del corpo cellulare (dendritri) che utilizzano per mettersi in contatto con i cheratinociti. Ogni melanocita è in contatto con circa 40 cheratinociti e insieme formano una “unità epidermico-melanica”.

I melanociti producono e accumulano la melanina in granuli detti melanosomi che vengono catalogati in base allo stadio di sviluppo (dallo stadio I allo stadio IV). I melanosomi allo stadio II e III sono poveri di melanina e sono più numerosi nelle etnie a pelle chiara mentre i melanosomi di stadio IV sono ricchi di melanina e abbondano nei melanociti delle etnie dalla pelle più scura. Lo schema del tipo di melanosomi e la loro distribuzione sono determinati a livello embrionale e non dipendono da fattori esterni come la luce solare.

I melanociti dei mammiferi possono produrre due tipi di melanina: la feomelanina (giallo-rossa) e la eumelanina (marrone-nera). L’eumelanina viene sintetizzata a partire dall’amminoacido tirosina e dipende da tre enzimi fondamentali: la tirosinasi (TYR), TYRP1 (tyrosinase-related protein 1) e la DOPAcromo tautomerasi (DCT).

La pigmentazione cutanea è quindi il risultato di due differenti processi: la sintesi di melanina nei melanociti ed il suo trasferimento dai melanociti ai cheratinociti.

In seguito ad uno stimolo come l’esposizione ai raggi UV i cheratinociti attivano una serie di segnali molecolari che “risvegliano” i melanociti i quali a loro volta inviano i melanosomi carichi di melanina ai cheratinociti. Una volta nei cheratinociti i melanosomi si dispongono intorno al nucleo cellulare per proteggere il prezioso DNA contenuto al suo interno.

In realtà l’esposizione ai raggi UV attiva due differenti meccanismi difensivi nella pelle. Oltre alla dislocazione della melanina negli strati superficiali dell’epidermide appena descritta la pelle reagisce anche aumentando lo spessore dello strato corneo. I filamenti di cheratina sono in grado infatti di assorbire e deviare parte dei raggi UV presenti nella radiazione solare.

I raggi UV si dividono a seconda della lunghezza d’onda in UVA (320-400nm), UVB (280-320nm) e UVC (200-280nm). Questi ultimi sono in genere schermati dallo strato di ozono e non raggiungono la superficie della Terra. I raggi UVB sono schermati dai vetri delle finestre e delle macchine mentre gli UVA passano attraverso i vetri e possono raggiungere gli strati più profondi della pelle.

Si stima che il tra il 20 e il 50% dei raggi UVA riesca a raggiungere lo strato dei melanociti mentre solo il 9-15% degli UVB riesce ad arrivare a tale profondità.

Livello di penetrazione dei raggi UV negli strati della pelle. I raggi UVA vanno in profondità arrivando sino agli strati profondi del derma

Mentre i raggi UVB (che colpiscono gli strati più superficiali) sono maggiormente responsabili di eritemi e scottature, i raggi UVA sono tra le maggiori cause dell’incidenza dei tumori della pelle (melanomi).

L’unico effetto benefico noto è legato alla produzione di vitamina D stimolata dai raggi UVB.

I raggi UV sono pericolosi in quanto stimolano la produzione di specie reattive dell’ossigeno (ROS, noti ai più come ossidanti o radicali liberi) e danneggiano direttamente la doppia elica del DNA aumentando il rischio di accumulare mutazioni che possono portare allo sviluppo di tumori. La melanina è in grado sia di schermare le radiazioni sia di reagire con i radicali liberi prevenendo i danni potenziali dovuti all’esposizione alla luce solare.

L’esposizione ai raggi UV può causare danni al DNA come rotture nei filamenti dei cromosomi  (frecce blu, fonte: Wikipedia).

L’abbronzatura è quindi una risposta difensiva della pelle e si realizza in due fasi: una fase precoce e una fase tardiva.

La fase precoce è rapida e stimolata soprattutto dai raggi UVA. Inizia immediatamente dopo l’esposizione, raggiunge il proprio massimo dopo 1-2 e ore e scema dopo 3-24 ore dopo. Questo processo rapido è dovuto alla traslocazione dei melanosomi esistenti verso le regioni periferiche dei melanociti e non involve la sintesi di nuova melanina.

La fase tardiva, invece, è un fenonemo graduale stimolato principalmente dai raggi UVB. Il processo inizia dalle 48 alle 72 ore dopo l’esposizione, raggiunge il massimo dopo 3 settimane e la pelle non torna al livello di partenza prima di 8-10 mesi dopo l’esposizione.

Questo secondo processo a differenza della risposta immediata coinvolge sia l’aumento nel numero di melanociti sia la sintesi di nuovi melanosomi e nuova melanina. I melanociti, inoltre, aumentano il numero di prolungamenti  così come la produzione dell’enzima tirosinasi.

Considerando che complessivamente il DNA di una singola cellula subisce ogni giorno almeno 500.000 singole lesioni (in genere eliminate da efficienti sistemi di riparazione molecolari) la melanina è un fedele cane da guardia che ci protegge continuamente oltre a donarci un’abbronzatura invidiabile!

Per approfondimenti  (review in inglese sull’argomento) cliccate QUI.

[Se questo post vi è piaciuto e volete rimanere aggiornati non dimenticate di mettere un bel “mi piace” sulla PAGINA FACEBOOK!]

Nessuna razza: il colore della pelle e la vitamina D

Inserito il

Sono veramente troppi gli episodi di intolleranza a cui dobbiamo assistere quotidianamente: dai barbari insulti al ministro Kyenge da parte di esponenti politici e non, ai cori contro atleti di colore come Balotelli, al razzismo di tutti i giorni che piaga le nostre comunità portandole verso la paura del diverso.

Personalmente considero qualsiasi forma di discriminazione un attentato al concetto stesso di Civiltà e trovo vergognoso che dopo millenni di evoluzione culturale possano ancora esistere uomini che reputano le proprie caratteristiche genetico-comportamentali superiori rispetto a quelle di altre persone.

Il concetto di razza sa di stantìo e le semplici differenze di pigmentazione cutanea non possono essere usate come discriminante razziale in nessun contesto.

Ma perché alcuni uomini sono bianchi ed altri sono neri?

Le risposte a questa domanda sono spesso fantasiose se non offensive, basti pensare a dottrine come il Mormonismo che vede la pelle scura come un marchio del peccato e una maledizione divina.

Senza scomodare nessun essere trascendente, le ragioni delle differenti colorazioni della cute umana hanno semplici basi genetiche ed evolutive. La risposta risiede, ancora una volta, in una molecola: la vitamina D.

Le vitamine sono molecole necessarie alla nostra sopravvivenza ma che il nostro organismo non è in grado di produrre in modo autonomo e che vanno quindi assunte quotidianamente tramite l’alimentazione.

Ciascuna vitamina svolge compiti essenziali all’interno del nostro organismo ed il gruppo delle vitamine D in particolare promuove l’assorbimento di calcio e fosforo, nonché il processo di mineralizzazione delle ossa. Una carenza di vitamina D porta a gravi malattie scheletriche come il rachitismo.

La vitamina D deve essere assorbita tramite il cibo. Negli ultimi diecimila anni in Europa lo sviluppo dell’agricoltura ha promosso i cerali ad alimento primario della dieta dell’uomo. I cereali però, a differenza di carne e pesce, non contengono la vitamina D ma solo un suo precursore, il quale può diventare vitamina D a livello della pelle grazie all’assorbimento dei raggi UV del sole.

Si può quindi vivere mangiando cereali a patto di assorbire abbastanza raggi ultravioletti dal sole, in modo da garantire la conversione del precursone in vitamina D finale. Un’eccessiva quantità di raggi UV, però, è pericolosa e può facilmente arrecare gravi danni alla cute (es. melanoma).

Il gioco si basa quindi sul bilanciamento tra questi due fattori. Da un lato una pelle scura garantisce una buona schermatura dai raggi ultravioletti ma limita la conversione del precursore in vitamina D; dall’altro una pelle chiara garantisce il corretto metabolismo della vitamina D ma espone maggiormente ai danni causati dai raggi UV.

In sintesi, una pelle scura è vantaggiosa nelle regioni tropicali, dove è importante proteggersi dal forte sole, a patto di introdurre abbastanza vitamina D da carne e pesce. Una pelle chiara, invece, è vantaggiosa nelle regioni nordiche, dove il sole scarseggia e, volendo continuare ad utilizzare i prodotti dell’agricoltura, è necessario assorbire la maggior quantità possibile dei pochi raggi UV messi a disposizione dalla latitudine elevata.

Questa è una delle ragioni per le quali la specie umana ha sviluppato un’ampia varietà di pigmentazioni cutanee.

La selezione naturale favorisce i caratteri più adatti ad affrontare le sfide dell’ambiente in cui ci si trova. Non è una questione di superiorità e inferiorità, ma di semplice adattamento.

[le idee esposte in questo post si possono trovare nel libro “Chi siamo, storia della diversità umana” di Luca e Francesco Cavalli-Sforza per Mondadori]

Se volete rimanere aggiornati non dimenticate di mettere un bel “mi piace” sulla PAGINA FACEBOOK!

%d blogger hanno fatto clic su Mi Piace per questo: